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Mathematical Modelling of Asymmetrical
Metal Rolling Processes

Jeremy John Minton
This thesis explores opportunities in the mathematical modelling of metal rolling

processes, specifically asymmetrical sheet rolling. With the application of control
systems in mind, desired mathematical models must make adequate predictions with
short computational times. This renders generic numerical approaches inappropriate.

Previous analytical models of asymmetrical sheet rolling have relied on ad hoc
assumptions about the form of the solution. The work within this thesis begins
by generalising symmetric asymptotic rolling models: models that make systematic
assumptions about the rolling configuration. Using assumptions that apply to cold
rolling, these models are generalised to include asymmetries in roll size, roll speed and
roll-workpiece friction conditions. The systematic procedure of asymptotic analysis
makes this approach flexible to incorporating alternative friction and material models.
A further generalisation of a clad-sheet workpiece is presented to illustrate this. Whilst
this model was formulated and solved successfully, deterioration of the results for any
workpiece inhomogeneity demonstrates the limitations of some of the assumptions used
in these two models.

Attention is then turned to curvature prediction. A review of workpiece curvature
studies shows that contradictions exist in the literature; and complex non-linear rela-
tionships are seen to exist between asymmetries, roll geometry and induced curvature.
The collated data from the studies reviewed were insufficient to determine these rela-
tionships empirically; and neither analytical models, including those developed thus
far, nor linear regressions are able to predict these data. Another asymmetric rolling
model is developed with alternative asymptotic assumptions, which shows non-linear
behaviour over ranges of asymmetries and geometric parameters. While quantitative
curvature predictions are not achieved, metrics of mechanisms hypothesised to drive
curvature indicate these non-linear curvature trends may be captured with further
refinement.

Finally, coupling a curved beam model with a curvature predicting rolling model
is proposed to model the ring rolling process. Both of these parts are implemented
but convergence between them is not yet achieved. By analogy this could be extended
with shell theory and a three dimensional rolling model to model the wheeling process.
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Chapter 1 1

Introduction 2

Global steel consumption was projected to exceed 2 Gt in 20171 and global aluminium 3

production reached nearly 60 Mt in 20162. Production of metals generally involves 4

four stages: ore extraction, surface or underground mining, or digging of ore sands; 5

smelting, chemical or thermal processing of ores into pure metals; casting, the shaping 6

of metal by pouring molten metal into molds; and forming, the shaping of the metal 7

workpiece by mechanical means. Numerous forming processes are employed and many 8

products undergo more than one of these during manufacturing. Consequently, a few 9

processes are common between most metal products. For example, in excess of 99% of 10

steel is rolled after casting and around half of aluminium undergoes rolling at some 11

point(Allwood et al., 2012). Innovations in these key processes have the potential for 12

huge reductions in emissions and cost, and improvements in quality and throughput. 13

Until automation occurred during the industrial revolution, manufacturing relied 14

on skilled artisans hand producing individual items. Product creation was divided into 15

many small steps for mechanisation or greater labourer specialisation, machine-based 16

manufacturing pushed artisan workmen out of mainstream manufacturing. Machines 17

are now able to accomplish nearly every step of most manufacturing processes, increasing 18

speed and ensuring high reliability. 19

Recently, manufacturing management strategies, such as just-in-time manufacturing, 20

and recent market trends for bespoke components have increased the demand for flexible, 21

yet still automated processes. Computer Numerical Control (CNC) machines have met 22

that demand and are now commonplace in additive and subtractive manufacturing; 3D 23

1www.steelbb.com/files/PDFDownloads/Eurostrategy%20Outlook_2017_Report_orderform.pdf
accessed 2017/05/04

2www.minerals.usgs.gov/minerals/pubs/commodity/aluminum/mcs-2017-alumi.pdf accessed
2017/05/04
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2 Introduction

printing and milling are respective examples. Development in forming automation has1

not followed suit due to a dependence on part-specific tooling: the need for specific2

tools in many processes like dies for deep drawing or custom profiled rolls for profiled3

rolling. Consequently, most forming processes remain open loop or rely on many4

repetitions to find viable operating conditions. This will not satisfy demand for more5

bespoke, higher quality products; lower energy consumption or material waste; and6

resilience to higher variability of raw material from recycled metals. This continues to7

motivate research into these century old processes, including this work.8

Assorted approaches to rolling have been studied: thin-sheet asymptotic models9

for asymmetric rolling in Chapter 2 and clad sheet rolling in Chapter 3, statistical10

and existing methods in literature for curvature prediction in Chapter 4, a thick-sheet11

asymptotic model for asymmetric rolling in Chapter 5, and a slab method for ring12

rolling with a brief discussion of the English wheel in Chapter 6. But first, we begin13

with a general introduction to rolling processes and the equations which govern them.14

1.1 Sheet Rolling15

Sheet rolling is the process of reducing the thickness of a metal flat-sheet workpiece by16

passing it between two rolls separated by less than the current workpiece thickness.17

Rolling is performed in many different regimes but is generally categorised into hot18

rolling, cold rolling and foil rolling. Hot rolling, Figure 1.1a, is when the workpiece19

is rolled above the recrystallisation temperature to prevent hardening. This process20

typically occurs during rough rolling: the reduction of large workpieces, such as21

cast ingots, to an appropriate size for subsequent forming. Some finished products22

are produced with hot rolling including thick sheet metal, I-beams, vehicle frames,23

building materials and other items with simple cross-sections and rough surface finishes.24

Cold rolling, Figure 1.1b, is when the workpiece is rolled below the recrystallisation25

temperature. Deformation heating may still cause the workpiece to far exceed room26

temperature, but recrystallisation temperatures can be much higher again: as much27

as 540oC for low carbon steel. Work hardening is a by-product of this and can be as28

much as 20% with 50% reduction in thickness. Reduction is limited during cold rolling29

but cold rolling produces a better surface finish than hot rolling. It is typically used for30

the final rolling passes so workpieces are typically thinner to begin with. Cold rolled31

products include metal furniture, computer hardware, metal drums and other thinner32

sheet metals. Foil rolling is also a room temperature process but the workpieces are33
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1.1 Sheet Rolling 3

thinner again. It is usually characterised by extremely high pressures and elastic roll 1

deformation. As the name suggests, metal foils comprise the products of foil rolling. 2

For each of these processes there can also be a range of roll configurations. To 3

ensure sufficient rigidity of the working rolls, two-roll configurations can be reinforced 4

with a single set of backup rolls in a four-roll configuration, or with two sets of backup 5

rolls in a six-roll configuration, or with even more in cluster configurations. These are 6

chosen to minimise span-wise deflection that results in span-wise variation of workpiece 7

thickness. Sometimes the rolls can be reversed to pass the workpiece forward and back 8

for incremental reductions. Three high roll configurations pass workpieces forward 9

and back passes on the top and bottom of the middle roll. Time is saved without the 10

delay of stopping the rolls and bringing them up to speed in the opposite direction; 11

although, raising and lowering the workpiece between the roll gaps adds complexity. 12

Tandem mills set up multiple rolling stands in series and the workpiece feeds from one 13

stand into the next. This increases throughput at the expense of complexity from the 14

forward and back tension coupling between the stands. 15

It is worth introducing relevant terminology and geometry before explaining the 16

key dynamics of the process. The workpiece thickness, roll radii, and entrance velocity 17

are all self evident, labeled ĥ0, R̂t/b and Û0 in Figure 1.2 respectively. The contact 18

points, or tri-junctions, are the four intercepts between the workpiece and the rolls. 19

The roll bite is the region between the two rolls where the workpiece is gripped by 20

the rolls, the shaded region in Figure 1.2, and the roll bite length is the horizontal 21

length of this region, taken as the horizontal distance between the workpiece contact 22

points on the roll, l̂ in Figure 1.2. The amount the workpiece thickness is reduced is 23

the gauge, ∆h and the fractional change in the workpiece thickness, Deltah
h0

, is called 24

the reduction. This distinction will not be important in this work as both values are 25

equivalent after non-dimensionalising vertically by the initial workpiece half thickness. 26

Within the roll bite, the pressure ramps up from the entrance due to friction pulling 27

the workpiece into the roll gap. Towards the end of the roll bite the pressure must ramp 28

down again to match conditions outside the roll bite. The result is a characteristic 29

pressure hill. To better understand the physics of this, first consider conservation of 30

mass and the coarse approximation of plug-like flow. The material of the workpiece is 31

forced to move faster as the distance between the rolls decreases; the surface velocity 32

is marked as a solid line in panel (b) of Figure 1.3. Contrast this with the roll surface 33

which maintains a constant velocity, marked as a dashed line on the same figure. The 34

intersection of these lines indicates the existence of a point, points, or region, at which 35
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4 Introduction

(a) Hot rolling at Thyssenkrupp Steel mill in Bochum, Germany.
Photograph credit: Uwe Niggemeier.

(b) Semi-disassembled cold rolling mill. Photograph source:
SMS group

Fig. 1.1 Examples of sheet rolling.

the direction of relative slip and hence friction changes. This is called the neutral point,1

x̂n and labeled in Figure 1.3. The opposing directions of friction act to squeeze the2

material towards the neutral point, building the pressure from both ends to a maximum3

at the neutral point. This is the mechanism forming the pressure hill. It is established4

by experiment and borne out in all rolling models presented in the literature.5

Possibly contrary to intuition, the position of the neutral point depends predomi-6

nantly on the balance of end forces on the workpiece. An end tension, or compression,7

would be balanced by the neutral point shifting to decrease, or increase, the friction8



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

1.1 Sheet Rolling 5

Fig. 1.2 A diagram of rolling illustrating the relevant parameters of two dimensional
geometry. This includes the workpiece half thickness, ĥ0; the roll radii, R̂t/b, the
workpiece inlet velocity, Û0; the roll bite length, l̂; and the gauge, ∆ĥ.

in that direction. Applying tension to both ends would not have this effect, rather 1

decreasing the pressure throughout the entire roll gap. 2

By considering rolling in this way, extrusion and drawing are special cases of rolling: 3

the roll velocities are zero and large entry compressions or exit tensions respectively 4

move the neutral point to the entry contact point. In the general case, the rolls are 5

not stationary and moderate end forces leave the neutral point within the roll gap. 6

Modelling of rolling began in early twentieth century Germany with notable publi- 7

cations including Siebel (1924), Siebel and Pomp (1927), Karman (1925) and Nadai, 8

1931. These each present a variation of a slab model: a model that determines the roll 9

pressure and roll shear through the roll gap by applying a force balance to each vertical 10

element, or slab, of the workpiece. This assumes no through thickness variation of 11

internal stresses, no internal shear and the workpiece is at yield on the roll surfaces. 12

Some experimental results support the validity of these assumptions, however, there is 13

no rigorous basis for them and the limits of validity have not been thoroughly explored. 14

Despite this, slab models are being developed and extended to more diverse applications, 15

applications such as asymmetric rolling where shear is likely to be significant. 16

The next major contribution came from Orowan (1943) in which an approximate 17

model that incorporates shear is presented. Horizontal and vertical force balances 18

are closed by assuming that, locally, the solution can be approximated by Nadai’s 19

compressing wedge solution (Nadai, 1931). By considering a vertical element of material, 20

marked by the lines A− A′ and B −B′ in Figure 1.4, and assuming this region is in 21

dynamic equilibrium, the net forces on the dashed lines must equal the net forces on 22
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Fig. 1.3 A diagram of rolling (a), and characteristic plots of velocity (b); shear (c); and
pressure (d), on the workpiece-roll interface. This illustrates the direction change of
the interfacial relative slip; the resulting change in sign of shear; and the characteristic
pressure hill this mechanism produces. The neutral point, x̂n, is the point of zero
relative slip.

the solid lines. By this argument A− A′ can be deformed to the circumference of a1

circle perpendicularly intersecting the rolls and B −B′ can be deformed to a wedge2

of the circumference A − A′. The Nadai (1931) solution is then applied to this new3

geometry which closes the force balance for each vertical element.4

Despite Orowan’s claims to eliminate ad hoc assumptions from the analysis, the5

validity of this model relies on the assumption that the forces of a vertical slab6

are equivalent to those of a wedge. First, this equivalence has not been verified7

experimentally, numerically or analytically, especially for shallow angle wedges; and8

secondly, the compressing wedge solution used, although exact, can only be found for9

flow toward the wedge apex, limiting the correctness to the inlet side of the neutral point.10



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

1.1 Sheet Rolling 7

Fig. 1.4 Diagram indicating the approximation of a vertical elemental, A−A′ −B′ −B,
to a compressing wedge solution (shaded) used by Orowan (1943) to close the force
balance on each vertical element.

Despite these inaccuracies, this solution has generally been adopted as a benchmark 1

and is widely used by industry although with parameters empirically fitted for different 2

set-ups. Some developments since then include Orowan and Pascoe (1946), D. R. Bland 3

et al. (1948) and D. Bland et al. (1948), which extend Orowan’s original work to 4

incorporate tensions or to simplify the calculation process with additional assumptions. 5

Slip-line theory has also been applied to symmetric rolling in two publications: 6

Alexander (1955) and I. F. Collins (1969). These develop sticking models and the 7

latter is limited to a qualitative discussion of the results due to no computation having 8

been attempted on the account of the model’s complexity. 9

Hartley et al. (1989) provides the first review of rolling which predominantly covers 10

these classical models as well as experimentation and some early finite element analysis. 11

More recently, asymptotic analysis has been applied to some metal forming applica- 12

tions. Asymptotic analysis exploits systematic assumptions of scale to find a rigorous 13

yet tractable approximation, as opposed to simplifications through ad hoc assumptions 14

of unknown error and limitation. It was first utilised in metal forming in 1987 by 15

R. E. Johnson. Having transferred these techniques from modelling creep in glaciers, 16

he considers conical extrusion of a power-law rate hardening elasto-plastic material 17

with Coulomb friction and neglected inertia. The asymptotic limit is quite elegant 18

in that it considers deviation from a plug flow, making the solution valid for either 19

low friction or shallow dies. One or both of these assumptions form the basis of all 20
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following asymptotic methods in extrusion and rolling. For example, Govindarajan1

et al. (1991) consider shallow die extrusion of a porous, compressible material.2

A series of papers apply these same techniques to sheet rolling with R. E. Johnson3

as a common author. The first of these is Smet et al. (1989), followed three years4

later by R. E. Johnson and R. Smelser (1992). The former applies an almost identical5

process to that of R. E. Johnson (1987) while also neglecting elasticity and, of course,6

accounting for the neutral point, which is not present in extrusion. The latter paper7

makes a number of additional simplifications to progress further towards a closed form8

solution; the workpiece is modeled as a rigid material with arbitrary plastic behaviour9

and the rolls and workpiece interaction is modeled as a friction factor.10

A similar formulation in Domanti and McElwain (1995) re-introduces Coulomb11

friction, while assuming the ratio of maximum pressure to yield stress is large and12

the reduction is small. Unfortunately, the first of these requires compressive end13

conditions and the latter, due to the coupling between reduction, roll bite length and14

sheet thickness, restricts the valid geometry considerably.15

Finally, using a relative-slip friction model and strain-rate dependent constitutive16

equations, Cherukuri et al. (1997) solves the governing equations to a single ODE17

assuming only a small aspect ratio. This is repeated for small, medium and large18

friction then again with no-slip conditions.19

Asymptotic approaches to three dimensional effects and spread are considered in20

R. E. Johnson (1991) and Domanti, McElwain, and Middleton (1994). The former has21

a rare comparison to finite element simulations and experimental results. Asymptotic22

analysis has also been used for stability analysis of ‘chatter’ in R. E. Johnson (1994b);23

a multiple scales analysis of work roll heat transfer in R. E. Johnson and Keanini24

(1998); and a model for roller deformation in Langlands et al. (2002). A review of25

modelling methods applied to rolling is presented in Domanti and McElwain (1998)26

although no comparison of results is made.27

Many numerical studies have been performed since they began in 1972 with Alexan-28

der (1972). Notably, Venter, R. D and Abd-Rabbo, A (1980) and Venter et al. (1980)29

develop numerical implementations of the Orowan (1943) solution. Finite element30

simulations have since become the most popular technique and several reviews exist31

including Montmitonnet and Buessler (1991) and Montmitonnet (2006), in which 3432

and 25 publications of finite element simulations of rolling have been reviewed respec-33

tively. It is, in fact, included as an example problem in the commercial finite element34

package, ABAQUS , ‘Example Problems Manual’ (Dassault Systemes, 2012b). This35
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ubiquity is a result of the analytical models failing to generalise to a range of materials 1

and geometry without reformulation. Despite this, the computational time of FEM 2

remains long, too long for integration with control systems. The results from these 3

investigations are also difficult to transfer or generalise; the process of constructing 4

and solving these simulations is often repeated in independent studies for very similar 5

set-ups. 6

1.1.1 Asymmetric Rolling 7

Asymmetry can arise during the rolling process in a variety of ways including asymmetric 8

roll sizes, roll speeds or roll-workpiece interfaces; asymmetric material properties from 9

hardening or temperature variation; and asymmetric end conditions. These may 10

manifest unintentionally through machine wear, material imperfections or poorly 11

designed heating; or be intentionally exploited to simplify machine design such as 12

single drive stands, reduce energy consumption by maximising shear strain or improve 13

product quality by increasing strain hardening. 14

The rolling of inhomogeneous sheets, specifically clad or bi-metallic sheets, is 15

another instance of asymmetry. The bonding of sheets can occur during the rolling 16

processes and so both bonded and unbonded sheets have been studied in literature as 17

well as the transition between the two. Composite sheets can also reduce the required 18

total force and torque of rolling compared to homogenous sheets, which improves 19

efficiency. Other configurations such as tri-metallic, or sandwich sheet, rolling also 20

exists. 21

Like symmetric rolling, the pressure hill and the position of the neutral point are 22

key dynamics of asymmetrical rolling. This is complicated by the asymmetry because 23

the neutral points on each roll surface are not generally vertically coincident. This 24

leads to a region, termed the cross-shear region, between the neutral points in which 25

the traction forces act in opposite directions. The cross-shear region has a high, fairly 26

uniform shear stress through thickness as opposed to the other sections where shear is 27

zero near the centreline. The cross-shear region is also characterised by a truncation of 28

the apex of the pressure hill: the horizontally opposing traction forces do not squeeze 29

the workpiece in this region. This provides an explanation for the reduced roll force 30

and torque required in asymmetric rolling. The high shear is also likely the explanation 31

for increased work hardening. 32
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Two key areas of interest in asymmetrical rolling are the prediction of the roll gap1

strain field to predict micro-structural evolution and the prediction of the induced2

curvature.3

Analytical modelling has included a range of solutions. Modified slab models (Chek-4

marev et al., 1956; Kennedy et al., 1958; Sauer et al., 1987) have been incrementally5

developed to include more asymmetries and even curvature predictions (Y. Hwang and6

Tzou, 1993; Mischke, 1996; Salimi and Sassani, 2002). Upper-bound methods (M. M.7

Kiuchi et al., 1986; D. Pan et al., 1982) and slip-line methods (I. Collins et al., 1975;8

Dewhurst, I. F. Collins, and W. Johnson, 1974) have also been applied with some9

making curvature predictions.10

Both slab-models (Afrouz et al., 2015; Y. M. Hwang et al., 1996; Y.M. Hwang11

et al., 1996; S. Pan et al., 2008; Qwamizadeh et al., 2013, 2014; Wang et al., 2015)12

and upper-bound methods (Y. Hwang, T. Chen, and Hsu, 1996; Maleki et al., 2013;13

Pishbin et al., 2010; Shintani et al., 1992) have also been employed to study clad14

sheet rolling with some extending curvature prediction to this area (Lee et al., 2015;15

Qwamizadeh et al., 2014; Shintani et al., 1992). The behaviour at the composite-16

interfaces, including slipping, bonding and bond breaking, is an additional consideration17

for rolling composite workpieces (S. C. Pan et al., 2006; Yong et al., 2000).18

Asymptotic analysis has been applied to modelling asymmetric rolling once (R. E.19

Johnson, 1994a).20

A more in-depth discussion of the homogeneous asymmetric rolling begins Chapter 221

and a more in-depth discussion of clad rolling begins Chapter 3. Specific attention is22

also given to curvature and curvature prediction in Chapter 4.23

1.2 Ring Rolling24

Ring rolling is another variation of rolling, shown in Figure 1.5. Instead of a flat sheet,25

a closed ring is rolled to reduce its profile thickness. A pair of vertical rolls are used,26

the unpowered inner roll is called the mandrel and the powered outer roll is called the27

work roll. The thinning of the ring results in growth of the ring’s diameter and profile28

height. A second pair of horizontal rolls, called the axial rolls, are used to limit this29

growth in profile height. Unpowered guide rolls are also commonly used to ensure the30

ring remains centered on the work roll and mandrel.31

There are a number of key differences between ring rolling and sheet rolling. Most32

obviously, the joined workpiece couples the end conditions of the roll gap. Forces and,33



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

1.2 Ring Rolling 11

Fig. 1.5 A ring being rolled by a D53K CNC radial axial Ring Rolling Machine. On
the left, the ring is pinched between the work roll outside and the mandrell inside. On
the right, two horizontal conical rolls prevent vertical growth. Two unpowered guide
rolls are also visisble on the left, either side of the work roll. As the ring increases in
diameter, the left and right sets of rolls are moved apart.

more significantly, moments that otherwise would not be balanced with free sheets, 1

are supported by this coupling. Secondly, the characteristic reduction is small and the 2

roll gap aspect ratio is large; the opposite of many sheet rolling regimes. A corollary 3

of small reduction is that a single workpiece will undergo many rotations while being 4

formed, which increases the significance of work hardening during the process. Finally, 5

the workpiece width is comparably small so edge effects may be considerably more 6

significant than sheet rolling. In fact, axial rolls are required due to plane stress 7

conditions leading to profile height increases in some cases. 8

Three considerations of product quality include circularity, coaxiality and flatness. 9

These are measures of uniformity in local curvature, profile width and profile height 10

respectively. Two more considerations during processing are centrality, the distance 11

between the ring centre and the line of symmetry of the rolls; and slip, how much 12

the work roll surface slips on the workpiece or, in terms of asymmetrical rolling, the 13

position of the neutral point in the roll gap. The three measures of product quality 14

will always be of importance as tolerances for each will be specified by the product 15

application, where as centrality and slip are only of interest in so far as they have 16

proven useful to ensure successful process design. 17

Current areas of development in ring rolling include controlling circularity to 18

produce elliptical or other polygonal shapes; more complex profile control, such as 19

forming non-rectangular cross-sections; and flexible profile forming, such as forming 20

L-shapes of different proportions with a single tool set. 21
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Analytical models of ring rolling fall into two categories: models of the roll gap1

only (Hawkyard et al., 1973; Lin et al., 1997; Parvizi and Abrinia, 2014; Parvizi,2

Abrinia, and Salimi, 2011; Zamani, 2014) or mass conservation models of the ring3

evolution (Berti et al., 2015; Guo et al., 2011; Xu et al., 2012). This has been in the4

interest of processes design (Berti et al., 2015) or control (Hua et al., 2016). Other5

areas of research in ring rolling include profile ring rolling (Akcan, 2009; Zhou et al.,6

2014), curvature control (Arthington et al., 2016) and strain estimation (Quagliato7

et al., 2016). Existing literature is discussed in more detail in Chapter 6.8

1.3 English Wheel9

The English wheel, or the wheeling machine, is an unpowered manufacturing tool10

that entered mainstream use in the early 1900s. It consists of a ’C’ shaped frame11

mounting rolls at either end with a variable separation. By rolling regions of a sheet12

metal workpiece by hand, local thinning occurs, which causes out of plane deformation.13

Figure 1.6 pictures an English wheel and illustrates the frame, top roll and its use,14

although the lower roll cannot be seen beneath the workpiece.15

This comparably slow and manual process lost popularity as production volumes16

increased. Today it has been relegated to artisan workshops for custom part production17

and no instances of automation are known to the author. The English wheel has not18

only avoided automation, but no studies or models could be found of the process.19

This leaves some open questions regarding the regime that occurs within the roll gap,20

whether the plastic region is limited to the roll gap and whether bending from out of21

plane boundary forces contribute to the formation of curvature. The framework for a22

model of the English wheel is presented in Section 6.5.2 as well as further discussion of23

these points.24

1.4 Governing Equations25

Like any continuum mechanics problem, these processes are described with three sets of26

equations: kinetics, compatibility/kinematics, and constitutive laws. Newton’s second27

law governs kinetics,28

∇ · σ̂ = ρ̂â, (1.1)29
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Fig. 1.6 A doubly curved sheet being rolled with an Eastwood English Wheel. Photo-
graph by Nick Capinski.

where σ̂ is the stress tensor, ρ̂ is the density, â is the acceleration and hats here, 1

and throughout this document, denote dimensional quantities. For the applications 2

considered in this work inertia is negligible and so acceleration terms will be ignored 3

unless stated explicitly otherwise. 4

The kinematics can be satisfied most easily by considering deformation as a contin- 5

uous velocity field such that 6

∂ϵ̂ij

∂t̂
= 1

2

(
dv̂i

dx̂j

+ dv̂j

dx̂i

)
, (1.2) 7

where ϵ̂ij is the ijth term in the strain tensor, v̂i is the velocity in the ith direction, x̂i 8

is the basis vector in the ith direction and t̂ is time. 9
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The constitutive laws can be defined as some function of stress, strain, strain-rate,1

temperature or other external factors which might affect material properties,2

∂ϵ̂xx

∂t̂
= fxx(σ̂, ϵ̂, ϵ̂

t̂
, ...) (1.3)3

∂ϵ̂yy

∂t̂
= fyy(σ̂, ϵ̂, ϵ̂

t̂
, ...) (1.4)4

∂ϵ̂xy

∂t̂
= ϵ̂yx

t̂
= fxy(σ̂, ϵ̂, ϵ̂

t̂
, ...) (1.5)5

(1.6)6
7

where fij is a function determined by the constitutive law. A wide range of functions8

could be applied here and an appropriate choice must be made considering the functions9

form and accuracy for the application. Possibilities are discussed in the next section.10

These relations must be closed with a suitable set of boundary conditions, typically11

contact laws. There are numerous friction models that form the required contact laws12

so some discussion of these models is provided in Section 1.4.2.13

1.4.1 Material Models14

The constitutive, or material, law must relate the displacements and the stresses within15

the material. Many material models exist to describe different physical phenomena16

or satisfy particular analytical properties. This section is structured around the17

phenomena captured by constitutive laws in solid mechanics and each is discussed in18

the context of rolling processes.19

Plasticity20

Plasticity can be described as the permanent deformation of a material and is, clearly,21

essential for modelling any forming process. Plasticity is defined by a yield condition22

which, if satisfied, allows the material to deform irreversibly according to a flow rule23

for each tensor element. The flow rules are typically in terms of strain increments that24

define the mode of plastic deformation. The flow parameter then defines the magnitude25

of plastic deformation such that compatibility is enforced without exceeding the yield26

condition.27

Some flow rules can be related to the yield condition by defining the plastic strain28

increment vector as normal to the yield surface. These flow rules are called associative29

flow rules; compared to non-associative flow rules which violate this normality relation.30
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Associative flow rules have been shown to be accurate for metals but not soils and 1

rocks. 2

One common example of a set of associative flow rules are the Levy-Mises equations 3

which are associated with the von-Mises yield condition. These can be written for 4

plane strain, without elasticity or hardening, as 5

∂û

∂x̂
= λ̂ŝxx, 6

∂v̂

∂ŷ
= λ̂ŝyy, 7

∂û

∂ŷ
+ ∂v̂

∂x̂
= 2λ̂ŝxy (1.7) 8

9

10

and ŝ2
xx + ŝ2

yy + 2ŝ2
xy = 2k̂2 (1.8) 11

12

respectively, where λ̂ is the time differential of the flow parameter; (û, v̂) are the 13

horizontal and vertical velocity components respectively; ŝij is the ijth deviatoric stress, 14

ŝij = σ̂ij + p̂; p̂ is pressure; and, k̂ is the yield stress in shear. 15

The use of equality in equation (1.8) imposes a state of plastic deformation. If this 16

were an inequality, the left hand side less than the right, then λ̂ = 0 which eliminates 17

plastic deformation and, without elasticity, amounts to solid body motion. 18

Equation (1.8) implies an elliptic yield surface, which is both analytically appealing 19

and has been shown to more accurately describe metals than, say, the Tresca yield 20

condition. The inclusion of hardening would depend on the material being modelled as 21

some metals undergo considerable hardening where others do not. Neglecting elasticity 22

is also acceptable where plastic deformation is orders of magnitude larger than elastic 23

deformation. Rigid perfect plasticity with an elliptical yield surface is therefore a 24

reasonable choice to model the rolling processes. 25

Elasticity 26

Elasticity can be described as the reversible deformation of a material. It occurs above 27

and below yield and is usually assumed to be additive with plastic deformation, that is 28

ϵ̂ = ϵ̂e + ϵ̂p where ϵ̂, ϵ̂e and ϵ̂p are the total, elastic and plastic strains respectively. 29

Linear, isotropic elasticity is expressed as the generalised Hooke’s law, 30

ϵ = 1 + ν

E
σ − ν

E
tr (σ) I (1.9) 31
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where ν is Poisson’s ratio and E is the elastic modulus.1

Differentiating in time and using the Jaumann objective stress rate gives a rate2

form for easier comparison to the plastic equations,3

∂û

∂x̂
= 1 + ν

E

(
û
∂ŝxx

∂x̂
+ v̂

∂ŝxx

∂y

)
+ 1 + 3ν

E

(
û
∂p̂

∂x̂
+ v̂

∂p̂

∂ŷ

)
− 1 + ν

E

(
∂û

∂ŷ
− ∂v̂

∂x̂

)
ŝxy4

∂v̂

∂ŷ
= 1 + ν

E

(
û
∂ŝyy

∂x̂
+ v̂

∂ŝyy

∂y

)
+ 1 + 3ν

E

(
û
∂p̂

∂x̂
+ v̂

∂p̂

∂ŷ

)
+ 1 + ν

E

(
∂û

∂ŷ
− ∂v̂

∂x̂

)
ŝxy5

and ∂û

∂ŷ
+ dv̂

dx̂
= 21 + ν

E

(
û
∂ŝxy

∂x̂
+ v̂

∂ŝxy

∂y

)
+ 1 + ν

E

(
∂û

∂ŷ
− ∂v̂

∂x̂

)
(ŝxx − ŝyy) . (1.10)6

7

Linear elasticity is widely accepted as accurate for metals undergoing small defor-8

mations. The elastic modulus typically can be three orders of magnitude larger than9

the yield stress so once the material begins to yield plastic deformation quickly begins10

to dominate.11

Hardening12

Hardening can be described as the expansion of the yield surface as a result of other13

changes in the material. It can occur in response to a range of factors but is commonly14

connected to strain or strain-rate.15

Strain hardening, also called work hardening or cold working, increases the yield16

stress depending on the accumulated strain, or the strain path, of the material. Strain-17

rate hardening increases the materials resistance to plastic deformation as deformation18

occurs more quickly making the yield stress a function of the plastic flow rate.19

For example, the von-Mises yield condition is modified here to incorporate strain-rate20

hardening. Using a new variable Ω̂, for21

ŝ2
xx + ŝ2

yy + 2ŝ2
xy = 2Ω̂, (1.11)22

23

The yield stress is made dependent on the plastic flow rate, λ̂, by choosing a power24

law relation, such as25

λ̂

λ̂0
=
Ω̂
k̂

n−1

.26
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Cherukuri et al. (1997) made the dimensionally inconsistent choice λ̂0 =
(
k̂
)n−1

for 1

the associated flow rule 2

∂û

∂x̂
= Ω̂n−1ŝxx, 3

∂v̂

∂ŷ
= Ω̂n−1ŝyy 4

and ∂û

∂ŷ
+ dv̂

dx̂
= 2Ω̂n−1ŝxy, (1.12) 5

6

Both strain hardening and strain-rate hardening can be used to increase accuracy 7

of a yield condition. Each are significant for certain types of metals and both have 8

been used in rolling models. 9

Other Phenomena 10

The yield stress can be made dependent on a wide range of other factors by modifying 11

equation (1.8) to make k̂ a function of any number of additional variables. One example, 12

relevant to hot forming processes, is temperature. Other, less relevant examples, could 13

include chemical state, compaction or the local magnetic field. Often this additional 14

dependence will be the source of coupling between the deformation equations and other 15

dynamics such as temperature diffusion, chemical reactions or electro-magnetic state. 16

There also exists kinematic hardening, or more generally anisotropic hardening 17

as hardening of a material does not necessarily occur uniformly in every direction. 18

Kinematic hardening is when the yield surface translates; that is hardening in one 19

direction results in softening in another and is known as the Bauschinger effect. 20

1.4.2 Friction Models 21

With a complete set of governing equations, it remains to define boundary conditions 22

and close the system. Surface contact occurs throughout manufacturing and provides 23

the necessary conditions. 24

Normal forces are satisfied with a no-penetration condition; however, traction forces 25

are less obvious and continue to be the subject of research in tribology and other 26

areas. There are many traction models available so several of the most common are 27

discussed here. Numerous other models exist with increasing complexity, particularly 28

for high temperate and lubricated conditions. Despite many models existing, there 29

is a scarcity of experimental work to determine their validity for rolling. Mamalis 30
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(1975) and Ghobrial (1989) appear to be two of the few experimental works that1

approach this subject, although tangentially. Photo-elastic rolls (Ghobrial, 1989) or a2

pin load cell/membrane method (Mamalis, 1975) are used to measure the roll pressure3

distribution, which could be used, with a model or numerics, to fit a friction model.4

More direct measurement appears to be an enormous experimental challenge and so5

has not been investigated further. This being the case, the additional complexity of6

other models is unlikely to add additional insight or accuracy and so only these general7

models are considered in this work.8

Coulomb Friction9

Coulomb friction is widely used. It is the assumption that the friction force is propor-10

tional to the normal pressure,11

τ̂ = −µn · σ̂ · n
∆û
|∆û|

(1.13)12

where τ̂ is the tangential surface traction, µ is a constant dimensionless friction13

coefficient, n is the unit normal vector to the contact surface, σ̂ is the stress tensor14

and ∆u is the relative slip velocity vector of the plastic material past the surface. It15

has been applied to static and slipping friction problems, although coefficient values16

are very different between these regimes. It is generally considered accurate over a17

mid-range of traction force and saturation will be reached at high pressures, ultimately18

when the yield condition is reached with shear alone.19

Figure 1.7 illustrates the result of this friction model in an asymptotic model of20

symmetric rolling assuming a thin sheet and low friction, following a method similar21

to Cherukuri et al. (1997). There is a discontinuity in the shear stress at the neutral22

point, which produces a corner at the apex of the pressure hill. The discontinuity aside,23

this model produces a textbook pressure hill.24

Relative-Slip Friction25

Relative-slip friction is specifically a slipping model as it assumes the friction force is26

proportional to the velocity difference between the surfaces in contact,27

τ̂ = −κ̂∆û (1.14)28
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Fig. 1.7 Illustrative example of pressure and shear stress field and respective values on
the roll surface for rolling with Coulomb friction assuming low friction and a small roll
gap aspect ratio.

where κ̂ is a constant friction coefficient with dimensions Newton seconds per meter 1

cubed. It predicts zero traction for static contact and exceeds the yield stress at high 2

slip rates, which provide obvious bounds to its validity. 3

Figure 1.8 illustrates this friction model in the same context as Figure 1.7. The 4

apex of the pressure hill is smoothed as there is no discontinuity around the sign change 5

of shear. The maximum shear is predicted at the workpiece-roll contact points, which 6

is not generally considered to be true. 7

Friction Factor 8

Friction factor is the assumption that friction forces are constant at some fraction of 9

the yield stress, 10

τ̂ = −mk̂ ∆û
|∆û|

(1.15) 11

where m is a constant dimensionless factor, typically taken as 1 and always between 0 12

and 1 inclusive. 13

Friction factor models become accurate as others saturate and so are applicable to 14

high friction regimes. This makes them attractive for hot rolling models. They are 15

also attractive for their simplicity and for not further coupling the governing equations 16

when used in conjunction with a constant yield stress, k̂. 17
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Relative Slip

Fig. 1.8 Illustrative example of pressure and shear stress field and respective values on
the roll surface for rolling with relative-slip friction assuming low friction and a small
roll gap aspect ratio.
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Friction Factor

Fig. 1.9 Illustrative example of pressure and shear stress field and respective values
on the roll surface for rolling with a factor friction model assuming low friction and a
small roll gap aspect ratio.
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Figure 1.9 illustrates the effect of this friction model and, comparing with Figure 1.7, 1

looks very similar to coulomb friction. The shear discontinuity and sharp pressure hill 2

apex are both present. There is still a slight change in shear stress throughout the 3

roll gap as the plot shows shear stress, not surface traction, so the shape of the roll 4

contributes. Therefore, the pressure hill is slightly concave, although not as pronounced 5

as with the coulomb friction model. 6

No-slip Contact 7

The no-slip condition is another obvious friction choice, specifying the boundary 8

material displacements to be equal, rather than specifying surface forces. That is 9

û = Û (1.16) 10

where û is the velocity of one surface and Û is the velocity of the other. For rigid 11

perfectly-plastic, and other materials, this will leave the stresses undetermined and so 12

the associated stress condition is a friction factor model where m = 1. No-slip would be 13

appropriate for sticking conditions or very high friction situations such as hot rolling. 14

Transitional Models 15

Considering the relative regions of accuracy for the preceding models, it is unsurprising 16

that some models propose transitioning from one friction condition to another. For 17

example, Friction factor when Coulomb or relative-slip friction models saturate is an 18

obvious choice to prevent the yield condition being exceeded. This is commonly used 19

in finite element implementations. 20

Other models transition between friction definitions on a more ad hoc basis to 21

exploit the model most accurate for each circumstance. One example of this type of 22

model is presented in Karabin and R. E. Smelser (1990). 23

τ̂ = |τ̂ | ∆û
|∆û|

24

where |τ̂ | = min
(
µψl(n · σ̂ · n)m, k̂

)
25

and ψ = min
(

|∆u|
∆v

, 1
)

(1.17) 26

27

where µ, ∆v, l and m are all constants. 28
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Karabin 90

Fig. 1.10 Illustrative example of pressure and shear stress field and respective values
on the roll surface for rolling with the Karabin and R. E. Smelser (1990) friction model
assuming low friction and a small roll gap aspect ratio. ∆v = 0.2Uroll, m = 2, l = 2
and /mu = 0.3.

Letting l = 1 and m = 1, this formulation will behave like relative-slip at low slip1

speeds, when ψ < 1. It will then transition to a Coulomb model at higher speeds,2

when ψ = 1 and |τ̂ | = µn · σ̂ · n. Finally, before exceeding the yield condition, it will3

transition to a friction factor model with coefficient of unity, |τ̂ | = k̂. Note that the4

position of this first transition relies on a non-physical parameter, ∆v, which must5

be fitted. The powers l and m are also fitting parameters. Fitting more parameters6

requires more experimentation of the process being modelled, which may or may not7

be feasible.8

Figure 1.10 illustrates this model. The results look quite strange but show some9

desirable characteristics. No discontinuity occurs, which presents a big advantage10

over Coulomb or friction factor models. The transition between signs also occurs11

more quickly than the relative-slip model and the maximum and minimum shear is12

moved within the roll gap, which characteristically agrees with observed behaviour.13

While illustrative, this example could be made to match experimental results with the14

additional fitting parameters.15

More transitional models of increasing complexity exist such as Wanheim et al.16

(1978); however, as discussed in the introduction to this section, these are unlikely to17

add insight or value to this discussion and hence are omitted.18
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1.5 Modelling Approaches 1

Given a set of governing equations to describe each of these processes a range of 2

techniques can be employed to derive usable information. Finite element simulations 3

provide a versatile means of approximating complete solutions of complex geometries 4

and are hence used widely. The obvious draw back of finite element analysis is the 5

computational time and the limited transferability of understanding from one solution 6

to others. At the cost of generality, approximate analytical solutions can overcome 7

both of these challenges. These take longer to develop and hence are applied less widely. 8

The approximations are made either on an ad hoc basis or systematically. Both must 9

be verified for accuracy and validity; however, this is generally easier for the latter. 10

Regression modelling can also produce models that evaluate quickly; however, ensuring 11

robustness requires exhaustive experiments or simulations of the regime of interest and 12

so is an expensive approach. 13

Considering the broader objective of this work, to develop control systems, which 14

requires reliable predictions in real time or faster, finite element analysis is inappropri- 15

ate. A range of mathematical approaches, specifically asymptotic analysis, and some 16

regression modelling will be the basis of this investigation. They are faster solutions 17

that can be made sufficiently accurate within specific regimes. It is also hoped that 18

using these approaches will generate new insights into the underlying dynamics of 19

forming to inform process design and innovation. 20

Ideally both numerical and experimental validation would be conducted; however, 21

this was not feasible. Instead only finite element analysis is used. This has the 22

advantage of limiting possible deviation between analytical and numerical solutions to 23

a limited set of assumptions as the governing equations used in the simulations are 24

known. The draw back is, of course, that the accuracy of these governing equations to 25

model the problem physics will remain unquantified in this work. 26

Chapter 2 presents an asymptotic model of sheet rolling with asymmetry included 27

in the roll sizes, roll speeds and interfacial friction conditions. It is developed by 28

exploiting two assumptions: that the workpiece is thin and that the effect of friction is 29

weak. Chapter 3 extends this model to include a composite workpiece of two bonded 30

materials by solving for a free boundary denoting the interface of the two materials. 31

Curvature is a key property to be predicted in either of these applications and so a 32

review of curvature prediction is presented in Chapter 4. This includes a qualitative 33

review of numerical and experimental literature investigating curvature; a statistical 34
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analysis of the results presented in these publications; and a comparison of analytical1

models that predict curvature. An asymptotic model with alternative assumptions is2

proposed in Chapter 5 to model thick sheet rolling and capture more of the non-linear3

behaviour observed in the previous chapter. Chapter 6 concludes the substantive4

chapters with a framework for applying predictive curvature models to the ring rolling5

processes and, by analogy, to the English wheel.6
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Chapter 2 1

Asymmetric Rolling 2

An analytical model for asymmetric rolling is presented, which includes asymmetry in 3

roll friction, roll size and roll speed, for a rigid, perfectly-plastic thin sheet deformed 4

with Coulomb friction. This model is solved asymptotically, based on the systematic 5

assumptions that both the roll gap aspect ratio and the friction coefficient are small. 6

The leading order solution is shown to be consistent with an existing slab model (Y. 7

Hwang and Tzou, 1993); additional detail is then derived by looking to higher orders. 8

The higher order solution and the leading order solution are compared with finite 9

element simulations, and the results are used to determine the practical range of validity 10

of the analytical model. Within this region, it gives good quantitative predictions of 11

the force and torque results of finite element simulations and approximates through 12

thickness variation of stress and strain with orders of magnitude shorter computation 13

times than the finite element counter parts. This also validates the ad-hoc assumptions 14

made when deriving the previous slab model. 15

In Section 2.2 a model of asymmetric rolling is presented assuming a rigid, perfectly- 16

plastic workpiece and roll-workpiece interaction driven by slipping Coulomb friction. 17

The choice of material and friction models are used to illustrate the asymptotic process; 18

by analogy, a solution could be found for any of the friction or material models used 19

in the asymptotic rolling literature (Cawthorn et al., 2016; Cherukuri et al., 1997; 20

Domanti and McElwain, 1995; R. E. Johnson and R. Smelser, 1992; Smet et al., 1989). 21

This model is non-dimensionalised to find six non-dimensional groups: the aspect 22

ratio, δ and the friction coefficient, µ, which are both assumed to be small; and the 23

sheet reduction r; the ratio of roll sizes; the ratio of roll speeds; and the ratio of 24

roll-workpiece frictions, which are all considered to be of order one. The asymptotic 25

solution comprises Section 2.3, and this model is validated against the commercial 26
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finite element package ABAQUS/Explicit (Dassault Systemes, 2012a) through a range1

of asymmetries and parameters in Section 2.5. An abridged version of this chapter has2

been published in the International Journal of Mechanical Science (J. J. Minton et al.,3

2016).4

2.1 Introduction5

The mechanical simplicity of a single driven roll configuration first motivated investiga-6

tions into asymmetric rolling (Zorowski et al., 1963). Process efficiency gains, improved7

workpiece quality and reduced maintenance requirements are several reasons this area8

of research continues to be active. Curvature is also desirable to produce a wider range9

of products or eliminate product imperfections.10

Experimental investigations into asymmetrical rolling predominantly investigate11

the resulting workpiece curvature. This is thoroughly reviewed in Chapter 4 so will not12

be repeated here; however, some studies also report results of roll force and torque. W.13

Johnson and G. Needham (1966) and W. Johnson and G. I. Needham (1966) establish14

the correlation between roll speed asymmetry and the torque ratio and attribute this15

to the changing position of neutral points. D. Pan et al. (1982) identifies that this16

same asymmetry produces a drop in total roll force. Ghobrial (1989) is also notable for17

the use of a photo-elastic roll material to ascertain stress distributions throughout the18

rolls. The change in friction direction and cross-shear were able to be visualised and a19

higher peak roll pressure was observed for the smaller roll under roll radii asymmetry.20

Like experimental studies, many finite element method studies of asymmetrical21

rolling investigate curvature, also reviewed in Chapter 4; however, the stress and strain22

field results provide valuable insight. Shivpuri et al. (1988) illustrates the region of23

yield for speed asymmetry by plotting the equivalent plastic strain field. Horizontal24

stress fields for asymmetric friction in Richelsen (1997) show the pressure hill as well25

as oscillations through the roll gap. Markowski et al. (2003) shows a reduction in26

total roll force as the roll size asymmetry is increased. A rapid reduction occurs for27

small asymmetries and a gradual reduction continues for asymmetries beyond this28

point. The ratio of roll torques varies uniformly with increasing asymmetric roll size.29

Akbari Mousavi et al. (2007) verifies that both the total roll force and torque decreases30

with asymmetric roll speed. Contact stresses are also shown and present a pressure hill,31

distinct neutral points and a cross shear region. More recent work has investigated the32
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effects of increased shear due to asymmetry on microstructural behaviour induced by 1

asymmetry (Pesin et al., 2014). 2

Analytical modelling of asymmetrical rolling has included a range of approaches; 3

the most popular being to modify symmetric rolling slab models. This began with Y. 4

Hwang and Tzou (1993), in which through thickness variation of stress was neglected to 5

justify an average of the top and bottom friction forces used in the differential equation 6

for pressure. This model captures the region of cross shear, which is the dominant 7

effect in asymmetric rolling. Subsequent variations include Mischke (1996); Y. Hwang 8

and Tzou (1997); Salimi and Sassani (2002); Salimi and Kadkhodaei (2004); Gudur 9

et al. (2008); Qwamizadeh et al. (2014); and Aboutorabi et al. (2016): Mischke (1996) 10

uses an alternative origin to consider non-vertically aligned contact points on the inlet; 11

Y. Hwang and Tzou (1997) reformulates the original Y. Hwang and Tzou (1993) model 12

with constant shear friction; Salimi and Sassani (2002) applies assumptions about 13

through thickness stresses to generate curvature predictions. Salimi and Kadkhodaei 14

(2004) is worthy of note as it introduces vertical force and moment balances to resolve 15

horizontal stress on the top and bottom surface and the vertically averaged shear 16

stress through the roll gap; Gudur et al. (2008) applies the curvature prediction of 17

Salimi and Kadkhodaei, 2004 to estimate friction coefficients; Qwamizadeh et al. (2014) 18

assumes a quadratic through thickness shear profile; and Aboutorabi et al. (2016) 19

assumes a free surface profile as an alternative to assuming vertically aligned entry 20

contact points. The original slab models are based on ad hoc assumptions that are not 21

validated thoroughly, making the assumptions of these subsequent models increasingly 22

questionable. This seems particularly relevant for the more recent works which include 23

greater asymmetry and are even used to predict curvature. 24

Alternative techniques have included upper-bound methods (Y. Hwang and T. 25

Chen, 1996; M. Kiuchi et al., 1987) and slip-line methods (I. Collins et al., 1975; 26

Dewhurst, I. F. Collins, and W. Johnson, 1974). The upper-bound method assumes 27

a parametrised compatible strain field and minimises the energy of deformation to 28

determine the parameters of this field. Specifically, the strain field used in Y. Hwang 29

and T. Chen (1996) is a nozzle flow with quadratic profile and rigid body motion 30

outside of the roll gap. The slip-line method solves for the slip-lines, lines parallel to 31

the directions of principal stress, from compatibility conditions and assumptions of 32

the form of the slip-line field. The earlier slip-line model (Dewhurst, I. F. Collins, and 33

W. Johnson, 1974) applies assumptions valid for symmetric rolling to derive a closed 34

form solutions. These are elegant but limited in validity to weak asymmetries. The 35
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latter (I. Collins et al., 1975) achieves more generality by exploiting a sophisticated1

matrix formulation of slip-line problems (Dewhurst and I. F. Collins, 1973). This2

requires optimising twelve variables, which are reported to cause convergence challenges.3

Both slip-line models assume sticking friction.4

Both these methods predict roll force and torque; curvature; the roll contact points;5

and the yield region, but require a priori knowledge or assumptions about the form6

of the solution. This hinders the development of these models for other geometries,7

materials and friction behaviours, meaning they have seen less attention in recent years.8

The accuracy of curvature prediction for all of these models is examined specifically in9

Chapter 4.10

The results of the experimental and numerical publications have been used for11

validation in some of these publications. Quantifying the accuracy of a given model12

and the parameter regions of validity is essential to ensure a model can be utilised13

reliably. Simulations could be exploited more to provide this thorough validation.14

Asymptotic analysis has only been applied to asymmetric rolling by R. E. Johnson15

(1994a) where asymmetries were considered for the friction coefficients and roll speeds.16

The friction coefficient was assumed to be an order of magnitude larger than the roll17

gap aspect ratio, which is not representative of many thin sheet processes that are18

predominantly cold rolling. Experiments (W. Johnson and G. Needham, 1966; W.19

Johnson and G. I. Needham, 1966) and simulations (Knight et al., 2003, 2005) have20

also shown that the sign of curvature can be dependent on geometry, indicating roll21

size may be necessary to capture the complete dynamics of the process.22

2.2 Model Formulation23

Plane-strain is valid away from the workpiece edges for sufficiently wide workpieces24

and so is assumed. This means Figure 2.1 captures the extent of the model. The25

rolls are vertically aligned and the workpiece is fed horizontally. The initial workpiece26

half thickness is ĥ0 and the length of the roll gap is l̂, giving the roll gap aspect ratio27

as δ = ĥ0/l̂. The material model is taken to be rigid perfectly-plastic; that is, no28

elasticity and no hardening. It was also assumed that plastic deformation occurs29

everywhere within the roll gap and the yield region has vertical boundaries between the30

contact points at the entry and exit, marked as the hashed region in Figure 2.1. These31

assumptions are typical of existing slab and asymptotic models of rolling. Strictly,32

assuming horizontally aligned contact points, or vertical boundaries to the plastic33
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Fig. 2.1 An illustration of the idealised two dimensional rolling model.

region, imposes specific combinations of bending and shear end conditions for a given 1

asymmetry. It has been shown experimentally, though, that the bending effects from 2

non-extreme end conditions can be neglected (Salimi and Sassani, 2002). 3

Like Domanti and McElwain (1995), the von Mises yield criteria and associated flow 4

rule, the Levy-Mises equations, are used and slipping Coulomb friction describes the 5

roll-workpiece interaction. These equations are presented in Chapter 1. Asymmetry 6

is introduced into the friction coefficient, µ; roll radius, R̂; and roll surface speed, Û , 7

which must each be defined for the top, subscripted t, and the bottom, subscripted b, 8

rolls. 9
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δ is assumed to be small, which is appropriate when considering a thin sheet with1

large or flattened working rolls. Unlike Domanti and McElwain (1995), but rather2

like the first model of Cherukuri et al. (1997), the friction coefficient is assumed to be3

small, µ ≪ 1. These assumptions are generally valid for foil and cold rolling, but may4

also be valid for other configurations.5

The workpiece velocity on the roll surfaces is restricted to have no penetration.6

Horizontal and vertical force equilibria on the roll surfaces are combined with the7

Coulomb friction model to give shear boundary conditions in terms of pressure and8

horizontal stress on the top and bottom roll. The model is closed with a force at each9

end of the roll gap.10

Using carets to denote dimensional quantitites, p̂, ŝij, û, v̂, λ̂ and k̂ are defined11

as the pressure, ijth deviatoric stress, horizontal velocity, vertical velocity, flow rate12

parameter and yield stress respectively. Also, ĥt/b(x̂) is the roll surface, applicable to13

both top and bottom rolls and F̂in/out are the end tensions, per unit width, applied to14

the workpiece, applicable to the upstream and downstream workpiece.15

The upstream velocity of the workpiece is denoted as û0, although it is not possible16

to specify this value independently of the roll velocities. Consequently, û0 is taken as17

an undefined characteristic velocity for the purpose of non-dimensionalisation and its18

value is determined later from the roll velocities.19

2.2.1 Non-Dimensionalisation20

Vertical distances are scaled with the initial workpiece half thickness, ĥ0, and horizontal21

distances with the length of the roll gap, l̂. The aspect ratio, δ = ĥ0/l̂, is assumed22

to be small. The friction is also assumed to be small, µt/b = O(δ), so a normalised23

friction coefficient is defined as β = µb/δ = O(1), so that δ is the sole small parameter.24

Using the scaling choice of Cherukuri et al. (1997), the shear stress scales with the25

friction coefficient and yield stress, ŝxy = δβk̂sxy. The scaling used in Domanti and26

McElwain (1995), ŝxy = βk̂sxy, was also considered; however, this requires either small27

reductions or end compression to make the stress balance consistent.28

The scaling for longitudinal deviatoric stress is chosen to balance the yield condition29

and the scaling for pressure is chosen to balance the horizontal force balance: ŝxx = k̂sxx30

and p̂ = (ŝxy0/δ)p, where ŝxy0 is the characteristic shear stress defined above as δβk̂.31

Velocities are scaled by the upstream workpiece velocity and to balance incompressibility:32

û = û0u and v̂ = δû0v. Finally, the scaling for the flow rate is chosen to balance the33

horizontal flow equation: λ̂ = λ û0
k̂l̂

.34
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Armed with these definitions, 1

x̂ = l̂x ĥ = ĥ0h ŷ = ĥ0y 2

ŝxx = k̂sxx ŝxy = δβk̂sxy p̂ = βk̂p (2.1) 3

û = û0u v̂ = δû0v λ̂ = λ
û0

k̂l̂
, 4

5

we are now able to determine the non-dimensional governing equations, 6

−β ∂p
∂x

+ ∂sxx

∂x
+ β

∂sxy

∂y
= 0 (2.2) 7

−β ∂p
∂y

− ∂sxx

∂y
+ δ2β

∂sxy

∂x
= 0 (2.3) 8

9

10

∂u

∂x
= λsxx (2.4) 11

∂u

∂y
+ δ2 ∂v

∂x
= 2δ2βλsxy (2.5) 12

13

14

∂u

∂x
+ ∂v

∂y
= 0 (2.6) 15

16

17

ands2
xx + δ2β2s2

xy = 1, (2.7) 18
19

where incompressibility is used in favour of the vertical flow rate and, from plane-strain, 20

−sxx in favour of syy. 21

Similarly, the velocity boundary conditions are 22

v(x, ht) = u(x, ht)
dht

dx
, (2.8a) 23

v(x, hb) = u(x, hb)
dhb

dx
. (2.8b) 24

25

Plug flow, which is verified by the leading order velocity solution in the next section, 26

confirms the existance of a single neutral point on each roll as described in Chapter 1. 27

Given this phenomenon, the directional Coulomb friction coefficients are be more 28

simply described as constant on either side of each neutral point: 0 < x < xnt/nb and 29
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xnt/nb < x < 1 where xnt and xnb are the top and bottom neutral points. Hence, in1

addition to non-dimensionalising with the bottom roll friction coefficient, the friction2

coefficients are defined piecewise to eliminate surface slip from the problem formulation,3

γt =


µt

µb
: x < xnt

− µt

µb
: x > xnt

and γb =
 −1 : x < xnb

1 : x > xnb

. (2.9)4

This allows the shear boundary conditions to be expressed as5

sxy(x, ht) = γt (βp(x, ht) + sxx(x, ht)) + 2
β
sxx(x, ht)

dht

dx
6

+ δ2

2βγtsxy(x, ht)
dht

dx
+ 2βγtp(x, ht)

(
dht

dx

)2

(2.10a)7

+ 2
β
sxx(x, ht)

(
dht

dx

)3
+O

(
δ3
)

8

9

and10

sxy(x, hb) = γb (βp(x, hb) + sxx(x, hb)) + 2
β
sxx(x, hb)

dhb

dx
11

+ δ2

2βγbsxy(x, hb)
dhb

dx
+ 2βγbp(x, hb)

(
dhb

dx

)2

(2.10b)12

+ 2
β
sxx(x, hb)

(
dhb

dx

)3
+O

(
δ3
)
.13

14

The end force and velocity conditions are also non-dimensionalised as15

Fin/out =
∫ ht

hb

−βp+ sxxdy, (2.11)16

where F̂in/out = Fin/out
(
ĥt − ĥb

)
k̂, and17

2 =
∫ ht(0)

hb(0)
u(0, y)dy. (2.12)18

Note that, due to the choice of scaling, the small parameter, δ, occurs as δ2 only.19

This suggests that the subsequent asymptotic solution will be a good approximation20

whilst δ2 is small, rather than δ as previously thought. This is borne out later when21
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the first order correction is found to have no contribution and second order terms must 1

be used to make a correction to the leading order. 2

Finally, it is useful to define the workpiece height through the roll gap as ∆h(x) = 3

ht(x) − hb(x) and the total roll friction acting to the left as ∆γ = γt(x) − γb(x). 4

2.3 Solution 5

We seek an expansion for each of the variables, u, v, sij, p and λ of the form 6

A(x, y) = A(0)(x, y) + δA(1)(x, y) + δ2A(2)(x, y) +O(δ2). (2.13) 7

Assuming δ is sufficiently small, powers of δ are considered orthogonal so like terms 8

are collected and solved successively, starting from low orders of δ. 9

2.3.1 Leading order solution 10

Neglecting terms of order δ and smaller, the governing equations are reduced to 11

−β∂p
(0)

∂x
+ ∂s(0)

xx

∂x
+ β

∂s(0)
xy

∂y
= 0, (2.14) 12

−β∂p
(0)

∂y
− ∂s(0)

xx

∂y
= 0, (2.15) 13

∂u(0)

∂x
= λ(0)s(0)

xx , (2.16) 14

∂u(0)

∂y
= 0, (2.17) 15

∂u(0)

∂x
+ ∂v(0)

∂y
= 0, (2.18) 16

and s(0)2
xx = 1, (2.19) 17

18

with boundary conditions 19

s(0)
xy (x, ht(x)) = γt

(
βp(0)(x, ht) + s(0)

xx

)
+ 2
β
s(0)

xx (x, ht)
dht

dx
, (2.20a) 20

s(0)
xy (x, hb(x)) = γb

(
βp(0)(x, hb) + s(0)

xx

)
+ 2
β
s(0)

xx (x, hb)
dhb

dx
, (2.20b) 21

22
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1

v(0)(x, ht(x)) = dht(x)
dx

u(0)(x, ht(x)), (2.21a)2

v(0)(x, hb(x)) = dhb(x)
dx

u(0)(x, hb(x)), (2.21b)3
4

5

∫ ht(0)

hb(0)
−βp(0)(0, y) + s(0)

xx (0, y)dy = Fin, (2.22a)6 ∫ ht(1)

hb(1)
−βp(0)(1, y) + s(0)

xx (1, y)dy = Fout, (2.22b)7

8

9

and
∫ ht(x)

hb(x)
u(0)(x, y)dy = 2. (2.23)10

11

Equation (2.17) indicates that the leading order horizontal velocity is vertically12

homogeneous so enforcing conservation of mass to each vertical element of the workpiece13

gives14

u(0) = 2
∆h(x) . (2.24)15

Equation (2.19) can be solved to give s(0)
xx = −s(0)

yy = ±1. s(0)
yy = −1 is chosen to ensure16

the rolls remain in compression when p(0) < 1/β, hence,17

s(0)
xx = −s(0)

yy = 1. (2.25)18

Substituting these results into equation (2.16) gives19

λ(0) = 1
s

(0)
xx

du(0)

dx
= − 2

∆h2
d∆h
dx

. (2.26)20

Then integrating equation (2.18) and using the velocity boundary conditions, equa-21

tion (2.21), gives22

v(0) = −
∫ ht(x)

hb(x)

du(0)

dx
dy = 2

∆h2

(
ht
dhb

dx
− hb

dht

dx
+ y

d∆h
dx

)
. (2.27)23
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Equation (2.15) shows that the pressure is homogeneous through thickness so applying 1

the stress results to equation (2.14) and integrating in y gives 2

s(0)
xy = dp(0)

dx
y +K(x). (2.28a) 3

Assuming known shear conditions on y = ht and y = hb gives the general forms 4

dp(0)

dx
=
s(0)

xy (x, ht(x)) − s(0)
xy (x, hb(x))

ht(x) − hb(x) (2.28b) 5

and K(x) =
ht(x)s(0)

xy (x, hb(x)) − hb(x)s(0)
xy (x, ht(x))

ht(x) − hb(x) . (2.28c) 6

7

The stress boundary conditions, equation (2.20), applied to equation (2.28b) produces 8

an ordinary differential equation for pressure, 9

dp(0)

dx
= 1

∆h(x)

(
∆γ(x)

(
βp(0) + 1

)
+ 2
β

d∆h(x)
dx

)
. (2.29) 10

The pressure at the entrance and exit are determined from the workpiece force end 11

conditions, equation (2.22), as 12

p(0)(0) = 1
β

(
s(0)

xx (0) − Fin

∆h(0)

)
and p(0)(1) = 1

β

(
s(0)

xx (1) − Fout

∆h(1)

)
. (2.30) 13

This defines both boundary conditions for the ODE equation (2.29); however, the 14

discontinuous nature of ∆γ means that equation (2.29) must be solved in three sections, 15

as shown in Figure 2.2: the entrance region (0 < x < min(xnb, xnt)); between the neutral 16

points (min(xnb, xnt) < x < max(xnb, xnt)); and the exit region (max(xnb, xnt) < x < 17

1). 18

The locations of the neutral points, xnt and xnb, are determined to ensure pressure 19

continuity and the correct roll surface speed ratio. xnt and xnb are the locations where, 20

by definition, the surface velocity equals the roll velocity, hence the speed ratio of these 21

points must equal the roll surface speed ratio as illustrated in panel (b) of Figure 2.2. 22

The magnitude of the roll surface speeds are then satisfied by the choice of charac- 23

teristic velocity, û0. This is analogous to choosing the constant of integration marked 24

in panel (c) of Figure 2.2. 25

Finding the neutral points is implemented with a bounded numerical solver. One 26

of the two neutral points is solved for the correct relative speed ratio at the neutral 27
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Fig. 2.2 A schematic of the rolling process marking the differences in roll velocity and
neutral points (a); a plot of the characteristic surface velocity curve (b); and a plot of
the characteristic pressure with alternative, velocity scale, curves as dashed lines (c).

points while the second neutral point is solved in this calculation as the intercept of1

the pressure integrals using MATLAB’s ‘ODE Events’ functionality (matlab2015a)2

to ensure continuity.3

Once equations (2.28b) and (2.28c) have been solved for p(0) and K(x), substitution4

reveals the shear stress to be5

s(0)
xy (x, y) = βp(0)(x) + 1

∆h(x) (∆γ(x)y + (ht(x)γb(x) − hb(x)γt(x)))6

+ 2
β∆h(x)

(
d∆h(x)
dx

y +
(
ht
dhb

dx
− hb

dht

dx

))
, (2.31)7

8

which completes the leading order solution.9

2.3.2 Comparison with an Existing Slab Model10

Extracting the surface pressure and surface shear from this leading order solution is11

equivalent to employing a ‘slab’ model; this particular solution is equivalent to equation12

(10) in Y. Hwang and Tzou (1993) if small reductions are assumed. Y. Hwang and13

Tzou (1993) approximates the horizontal coordinate with an expansion of the tangent14

function, x = tan (ω) ≃ ω + ω3/3 where ω is the angular coordinate from the origin15

at a roll centre, to solve much of this in closed form. This also means the neutral16
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point search is reduced to numerically inverting an algebraic equation; however, this 1

approximation is only valid in the limit of small reductions. 2

While this agreement validates the assumptions made in Y. Hwang and Tzou 3

(1993), the rigour of the present method offers further benefits. The explicit style of 4

the assumptions in an asymptotic analysis makes the validity of the method easier to 5

establish. For example, neglecting the shear stress contributions in the yield criterion 6

at leading order is a consequence of assuming small friction coefficients so we can, in 7

principle at least, determine the range of friction coefficients for which accuracy is 8

ensured. Another benefit is being able to solve for correction order to improve accuracy 9

and potentially reveal additional phenomena. 10

2.3.3 Correction Terms 11

After solving the leading order solution, subsequent higher order terms of δ can be 12

solved iteratively. The same solution process is required at each order with additional 13

forcing terms from lower orders. The absence of order δ terms in the governing equations 14

or boundary conditions mean that this order is solved to be identically zero. This 15

suggests why the existing slab models have been generally successful; given their ad 16

hoc assumptions are correct, they achieve accuracy to O(δ2). 17

Further, accuracy can still be achieved by repeating this process with terms of 18

O(δ2). The correction terms increase the through-thickness resolution of the solution. 19

In practice each variable raises an order as a polynomial in y with each correction. 20

Horizontal velocity, pressure, longitudinal deviatoric stresses and the flow parameter 21

become quadratic in y and vertical velocity and shear stress become cubic. Velocity 22

also becomes dependent on the stress distribution so material properties and friction 23

behaviours affect the strain field. 24

For brevity the derivation of this correction has been relegated to Appendix A. 25

2.4 Numerical Simulations 26

The present model was compared to numerical simulations. The commercial finite 27

element package ABAQUS was used with a model modified from an explicit two 28

dimensional rolling model presented in Section 1.3.11 of the ‘ABAQUS Example 29

Problems Manual’ (Dassault Systemes, 2012b). Symmetry was broken by adding a 30

second roll and the initialisation was modified so the rolls closed onto the stationary 31
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Table 2.1 Initial Parameter Sets for Varying Parameter Comparison

Name (µb, δ, r) µt/µb R̂t/R̂b Ût/Ûb

Symmetric (0.1, 0.1, 0.25) 1.0 1.0 1.0
Friction (0.1, 0.1, 0.25) 0.9 1.0 1.0
Size (0.1, 0.1, 0.25) 1.0 0.9 1.0
Speed (0.1, 0.1, 0.25) 1.0 1.0 0.95
Combo 1 (0.1, 0.1, 0.25) 1.0 0.95 0.95
Combo 2 (0.1, 0.1, 0.25) 0.9 1.1 0.95

workpiece instead of feeding the workpiece into the roll gap with a non-zero initial1

velocity. Further discussion of the simulation configuration is provided in Appendix D.2

The first simulation set used a material close to rigid perfect-plastic so the asymptotic3

modelling assumptions are matched as closely as possible. This was to compare the4

accuracy of the asymptotic assumptions. The yield stress in shear was set to 173MPa5

with no hardening effects. ABAQUS cannot support rigid behaviour so the elastic6

modulus and Poisson’s ratio were set as high as feasible: 200GPa and 0.45 respectively.7

The symmetric base case was a 10mm strip thinned by 12% with 2.5m radius8

rolls; this roll size is realistic when approximating curvature of rolls flattened slightly9

from pressure. The friction coefficients were taken to be 0.1 and roll surface speeds10

to be 1.2ms−1. This gave non-dimensional values δ, r and µ, of 0.091, 0.12 and 0.111

respectively.12

From this configuration, the properties of the top roll were varied to achieve the13

desired ratios of top to bottom friction coefficient, surface speed and roll size. It14

is worth noting that δ varied with the roll size as the workpiece thickness was held15

constant.16

A second set of simulations were made to observe the performance over a range of17

the parameters: specifically, varying the friction magnitude, aspect ratio and reduction.18

One of these dimensionless parameters was varied while the others were held constant.19

This means two geometric parameters may vary simultaniously; for example, the roll20

size was reduced as the reduction was increased to ensure the aspect ratio remained21

constant. Six different sets of initial parameters, as specified in Table 2.1, were used.22

The lower roll surface speed and initial half thickness were 1.2ms−1 and 0.005m23

respectively. The material parameters used were further from perfect plasticity than24

the previous example to improve computation time but were observed to have minimal25

effect on the solutions: Poisson’s ratio of 0.35, elastic modulus of 100 GPa, and a yield26

shear stress of 100MPa.27
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Fig. 2.3 Roll force (top) and torque (bottom) as the top roll is varied to achieve the
ratio of roll characteristics: friction (left), speed (middle) and size (right). The other
parameters used are (ĥ0, R̂b, r, µ, k̂) = (0.01m,2.5m, 0.12, 0.1, 173MPa).

2.5 Results and Discussion 1

This section presents the comparison between the numerical simulations and asymptotic 2

solution for varying asymmetries, several cross sections of non-dimensional parameters. 3

Comparisons of stress and strain fields, computational time and a hardening material 4

approximation were also given. 5

2.5.1 Numerical Comparison over Varying Asymmetries 6

Results from the leading and second order asymptotic solution for the first set of 7

simulations described in Section 2.4 are plotted in Figure 2.3 with the numerical 8

simulation results. 9

The trends of the roll force and torque as each ratio is varied are captured well by 10

the asymptotic solution. The median error was 0.85MN and 0.007MNm for the force 11

and torque respectively with maximum errors of 2.25MN and 0.28MNm occurring for 12

asymmetric speeds where the magnitudes vary the most. Considering characteristic 13

force and torque values of 25MN and 1.0MNm, these median values correspond to less 14
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than 3.5% error. There is minimal difference between the leading order and corrected1

asymptotic solutions, which is expected given it is accurate to O(δ2). The discrepancies2

with the numerical results can most likely be attributed to elastic effects, which are3

neglected in the asymptotic model but incorporated in the simulations. This will allow4

the position of the contact points to vary, due to compressibility, which varies the5

length of the contact surface on these rolls. Given the high normal pressures this will6

have small but consistent contributions to the roll force and torque calculations.7

The most phenomenologically interesting trend in both cases is the drop in force8

and transition in direction of torque as the roll speed ratio varies. Figure 2.4 makes it9

clear that this trend stems from the movement of the neutral points from one side of10

the roll gap to the other.11

A region of sticking often occurs between the roll and workpiece denoted by the12

error bars in Figure 2.4. In this region the shear stress smoothly changes direction and13

the workpiece drops below yield which may be a consequence of elasticity or a static14

friction model. This is discussed more in Appendix D.5.15

Figure 2.4 shows that the force and torque plateaus where the neutral point reaches16

the end of the roll gap. The asymptotic solution predicted the location of the neutral17

point in all cases with similar accuracy to that observed in Figure 2.4, although the18

neutral point varies little while friction or roll size ratios are varied.19

In the case of large roll speed asymmetry, when a neutral point has reached an20

end of the roll gap, the assumption of Coulomb friction renders any further speed21

asymmetry inconsequential. The speed of the process, expressed by the velocity scaling,22

is then determined only by the non-slipping roll which does not give a unique solution.23

Elastic effects in the finite element simulations mean both roll speeds contribute until24

both neutral points have reached opposite ends of the roll gap. This explains the25

discrepancy between the numerical and asymptotic solutions of the left hand neutral26

point for asymmetric speeds below 0.9 and above 1.15, shown in Figure 2.427

2.5.2 Numerical Comparison over Varying Non-dimensional28

Parameters29

The roll force, roll torque and neutral points from the ‘Combo 2’ simulations are30

presented in Figure 2.5. The remaining five parameter sets, Table 2.1, exhibit similar31

trends so are illustrated by way of absolute error of roll force and torque in Figure 2.6.32
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Fig. 2.4 Roll torque (top) and neutral point (bottom) as the top roll speed is varied
for the ‘perfectly plastic’ material. Error bars indicate the finite length of sticking
between the rolls and workpiece. The other parameters used are (ĥ0, R̂b, Ûb, r, µ, k̂)
= (0.01m,2.5m, 1.2ms−1, 0.12, 0.1, 173MPa). Error bars indicate the finite length of
sticking between the rolls and workpiece.
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Fig. 2.5 Roll force (top), roll torque (middle) and neutral point (bottom) as the bottom
friction magnitude (left), aspect ratio (middle) and reduction (right) were varied for
the ‘Combo 2’ parameter set in Table 2.1. Error bars indicate the finite length of
sticking between the rolls and workpiece.



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

2.5 Results and Discussion 43

0.0

5.0

10.0

F
o
rc

e
(M

N
)

Friction, µb Aspect Ratio, δ Reduction, r

0.0 0.1 0.2

0.0

0.5

1.0

1.5

T
o
rq

u
e

(M
N

m
)

0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6

Top Roll - Symmetric

Top Roll - Speed

Top Roll - Friction

Top Roll - Size

Top Roll - Combo 1

Top Roll - Combo 2

Bottom Roll - Symmetric

Bottom Roll - Speed

Bottom Roll - Friction

Bottom Roll - Size

Bottom Roll - Combo 1

Bottom Roll - Combo 2

Fig. 2.6 Absolute error in roll force (top) and torque (bottom) between the asymptotic
solution and simulation results as the bottom friction magnitude (left), roll gap aspect
ratio (middle) and reduction (right) were varied for each of the parameter sets in
Table 2.1.
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The finite element simulations failed to reach a steady state when δ exceeded1

0.3 as the rolls slipped without deforming the workpiece. This is reflected by the2

asymptotic model as both boundary conditions cannot be satisfied with pressure3

continuity indicating a physical limit of the process.4

For larger friction coefficients, typically µb ≥ 0.3, the asymptotic solution broke5

down: terms began to ‘jump order’. That is, correction terms became as large as6

leading order terms, which is a clear sign that the premise of separating orders in7

the asymptotic analysis is invalid. This is unsurprising considering the small friction8

assumption is violated in these cases.9

Given these caveats, the asymptotic solution behaves as one would intuitively expect10

and captures most of the trends exhibited by the simulations within the presented11

parameter ranges. The major discrepancy is a clear deviation of roll torque for12

increasing friction coefficient. Figure 2.6 shows that this error only occurs in parameter13

sets with asymmetric roll speeds. The widening sticking regions around the neutral14

points in the simulations, observed in Section 2.5.1, may be driving this error. Sticking15

would smooth the surface shear sign change and, hence, minimise the severe effects the16

cross-shear region has on the roll torque observed with the asymptotic model. The17

increasing error with friction coefficient appears linear and is unsurprising considering18

the friction coefficient is assumed to be small.19

Variation due to changes in aspect ratio or reduction are well-captured by our20

model above δ = 0.05 and r ≈ 0.15. The poor agreement for small reduction may21

result from the workpiece dropping below yield, indicated by the widening sticking22

zone. The lower reduction rate would be insufficient for plasticity to penetrate the23

workpiece thickness resulting in significant elastic contributions.24

For small δ, force and torque are generally larger in magnitude so the larger absolute25

error is not too concerning. This is confirmed with Figure 2.7, which presents relative26

error and shows the convergence of an asymptotic solution. This convergence plateaus27

at very small δ as the simulations began to lose accuracy and the large relative errors28

are a consequence of the very small magnitudes at larger δ. The convergence may29

also perform better if µ is reduced with δ as the assumption is made that these are of30

comparable size. The noisy results of the top roll torque will be a consequence of how31

the neutral point is chosen, discussed above.32
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Fig. 2.7 Relative error in roll force (top) and torque (bottom) between the asymptotic
solution and simulation results as the bottom roll gap aspect ratio is varied for each of
the parameter sets in Table 2.1.
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2.5.3 Numerical Comparison of Stress and Strain Fields1

Referring to Figure 2.3, it is clear that the correction terms make little difference to the2

force and torque predictions. Nevertheless, there is a gain in qualitative accuracy from3

including higher order terms. This is evident when plotting the stress distributions and4

velocity fields between leading and correction order solutions: Figure 2.8 and Figure 2.95

respectively. The ‘Combo 2’ asymmetries and parameters have been used, specifically6

with reduction, roll gap and friction values of 0.33, 0.1 and 0.1 respectively.7

As discussed in Section 2.3.3, each variable gains additional through thickness8

resolution from the corrected asymptotic solution. Although all solutions now exhibit9

top-bottom asymmetry, this is most pronounced for the horizontal velocity, pressure10

and longitudinal deviatoric stresses, which are homogeneous in y at leading order. Both11

velocities gain dependence on the leading order shear stress fields via equation (3.5),12

which results in discontinuities at the neutral points. These discontinuities are a13

necessary consequence of Coulomb friction without elasticity or smoothing at low14

relative slip speeds. It is interesting to note that the leading order velocity solution is15

independent of the stress state, including the friction model used. This casts doubt on16

the analogous slab solutions being used for curvature predictions, discussed further in17

Chapter 4.18

The trends of the numerical pressure, horizontal stress and horizontal velocity19

fields are generally captured by the asymptotic solution. The shear stress and vertical20

velocity fields exhibit oscillations, or a series of lobes, through the length of the roll gap.21

This behaviour has not been described within the literature and so further investigation22

was conducted, which is presented in Chapter 5.23

These stress and strain fields can be used to determine the pressure and traction24

between the workpiece and the roll. These results are presented in Figure 2.10 and show25

good agreement for both roll pressure and traction. The good match of the roll pressure26

at entrance and exit validates the assumption that elasticity has negligble effect in27

these regions. Smoothed friction transition on both roll surfaces and oscillations of the28

stress lobes are observed but are characteristic of stress field discrepancies discussed29

previously. The latter is less significant here as the magnitude of the oscillations are30

smaller at the workpiece edges compared to the centreline.31
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Fig. 2.8 Pressure (top), horizontal deviatoric stress (middle) and shear stress
(bottom) fields for the ‘Combo 2’ parameter set, (µb, δ, r, µt/µb, R̂t/R̂b, Ût/Ûb) =
(0.1, 0.1, 0.25, 0.9, 1.1, 0.95), from the leading order asymptotic model (left) and cor-
rected asymptotic model (centre) and finite element simulations (right). Dashed
contours of finer resolution, 0.8MPa, illustrate the behaviour within the cross-shear
region.
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Fig. 2.9 Horizontal (top) and vertical (bottom) velocity fields for the ‘Combo 2’
parameter set from the asymptotic model; leading order (left) and corrected solution
(right).
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Fig. 2.10 Roll pressure (top) and roll shear (bottom) for the ‘Combo 2’ parameter set
from the corrected asymptotic model and finite element simulations.

2.5.4 Computational Time Comparison 1

The asymptotic solutions presented here, implemented in MATLAB (matlab2015a), 2

were computed in less than one fifteenth of the time the ABAQUS (Dassault Systemes, 3

2012a) finite element solutions were computed. More typical speed ups were of the 4

order of one thousand fold. 5

Further, the second order correction comes at a small additional cost to the leading 6

order; finding the neutral point consumes the majority of the computation time. The 7

leading order solution typically required around 20 seconds whereas the second order 8

correction typically required around one second1. This being the case, significant 9

speed-ups could be achieved by using prior knowledge of the neutral point and to apply 10

parallelisation. Applications that make repeated calculations under similar conditions, 11

such as control, lend themselves to this approach as smaller time increments lead to 12

faster convergence. Real time computation could be feasible under these conditions and 13

higher accuracy could be achieved with comparably small improvements in processing 14

power. 15

1Solutions computed on an Intel i5 3.4GHz quad-core with 32GB RAM.
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Fig. 2.11 Yield shear stress against effective strain for carbon steel used to compare
the present model with ABAQUS simulations. An elastic modulus of 180GPa and
Poisson’s ratio of 0.27 were also used.

2.5.5 Application to Hardening Material1

Proper treatment of a hardening material would require the reformulation of the model2

with an alternative yield condition and the rework of the asymptotic analysis. In the3

interest of a quick comparison, an ad hoc approximation is made: the yield stress4

is selected to correspond to the mean accumulated effective strain produced by the5

current model. This is compared to simulations of a hardening material based on6

carbon steel. Specifically, an elastic modulus of 180GPa; Poisson’s ratio of 0.27; and7

shear yield stress specified in Figure 2.11 are used.8

The trends of the roll force and torque, shown in Figure 2.12, deteriorate only9

slightly compared to the perfect plastic, Figure 2.3, over a range of asymmetries. The10

median errors become 0.17MN and 0.05MNm with maximum errors of 2.84MN and11

0.48MNm. Considering higher characteristic force and torque values of 40MN and12

2.0MNm, these median values still indicate errors below 3%. If this accuracy were13

insufficient more could be achieved with proper treatment of the appropriate material14

law.15
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Fig. 2.12 Roll force (top) and torque (bottom) as the top roll is adjusted to vary the
ratio of roll characteristics: friction (left), speed (middle) and size (right). The other
parameters used are (ĥ0, R̂b, r, µ, ν, Ê, k̂) = (0.01m,2.5m, 0.12, 0.1, 180GPa, 0.27,
186MPa to 494MPa).
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2.5.6 Alternative Friction Models1

Proper treatment can also be given to other modeling assumptions, particularly friction2

models. To illustrate this, two alternative friction models have been implemented3

to leading order. Each uses the same procedure followed in Section 2.3 with surface4

traction terms, the first term on the right hand side of equation (2.20), replaced with5

the appropriate friction model.6

The leading order stress fields of these solutions are presented in Figure 2.13. The7

deviatoric stress is unaffected by friction at leading order and so is homogenous in all8

three cases. The pressure is homogenous through the thickness and so the behaviour9

discussed in Section 1.4.2 remains relevant here, only with the addition of the cross-10

shear region. The friction factor is characteristically similar to Coulomb friction only11

less concave and relative-slip friction smooths both shear sign changes rendering the12

cross-shear region almost indistinct.13

The implementation used here can accommodate any friction model that depends14

on uncoupled properties and abides by the low friction assumption. This covers most15

common friction models and illustrates how this work can be modified to incorporate16

further tribology research in rolling.17

2.6 Conclusion18

A model for asymmetric rolling of rigid-perfect plastic sheets under Coulomb friction19

has been presented and solved asymptotically to a piece-wise ordinary differential20

equation. This was achieved via the systematic assumptions that the aspect ratio, δ,21

and the friction coefficient, µ, are small.22

The leading order solution agrees with one of the many ‘slab’ models (Y. Hwang23

and Tzou, 1993) for predicting roll force and torque in the limit of small reduction, an24

assumption not needed by the method presented here. This gives confidence to the25

ad hoc assumptions made to derive that ‘slab’ model by formalising the assumptions26

required to achieve these solutions. Correction terms of O(δ2), rather than O(δ), help27

to explain why this and other ‘slab’ models perform so well in practice.28

The O(δ2) correction still offers new predictions of the through-thickness variation29

of each stress and strain component. This qualitative refinement has a relatively minor30

effect on the force and torque predictions; however, it gains significance when modelling31



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

2.6 Conclusion 53

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

Leading Order Corrected FEM Simulation

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

0.0 200.0 400.0

x (mm)

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

200.0 400.0

x (mm)

200.0 400.0

x (mm)

100.0

115.0

130.0

145.0

160.0

175.0

190.0

205.0

220.0

p
(M

P
a
)

90.0

92.6

95.1

97.7

100.2

102.8

105.3

107.9

110.4

113.0

s x
x

(M
P

a)

-30.0

-22.5

-15.0

-7.5

0.0

7.5

15.0

22.5

30.0

s x
y

(M
P

a)

Fig. 2.13 Leading order solutions for pressure (top) and shear stress fields (bottom) for
Coulomb friction (left), friction factor (middle) and relative slip friction (right). The
’Combo 2’ asymmetries and geometry with 100MPa yield stress were used. Bottom
friction coefficients of 0.11, 0.3 and 1.0

(
û(0)(l̂) − û(0)(0)

)
were used for each model

respectively. Leading order pressure is vertically homogeneous, deviatoric stress and
both strain feilds remain identical to the Coulomb case shown in Figure 2.8 and
Figure 2.9.
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hardening effects, such as R. E. Johnson and R. Smelser (1992), or if consideration must1

be made of the material micro-structure, such as modelling dynamic recrystallisation.2

The asymptotic solution was compared to finite element simulations in the most3

comprehensive validation of an asymmetric rolling model to date. The asymptotic4

model captures most trends present in the simulated force, torque and neutral point5

variation while taking orders of magnitude less time to compute. Specifically, it6

was confirmed that the model performs well within the region where 0.1 ≤ δ ≤ 0.3;7

0.15 ≤ r ≤ 0.6; µb ≤ 0.1; and asymmetries of roll size, speed and friction between 0.88

and 1.5. Outside these limits, thin sheet asymptotic and ‘slab’ models should be used9

with extreme care. In particular, for µt ≥ 0.3 the solution was found to ‘jump order’,10

indicating that it should be considered invalid.11

The geometric regime compared here corresponds to thin sheet rolling - for example,12

a 4mm sheet reduced by 25% with a 0.5m effective roll radius. The material assumptions13

are applicable to materials with minimal hardening and high elastic modulus compared14

to the yield stress, such as lead, mild steel and some aluminium alloys. The tolerance15

for hardening can be extended by considering the strain predictions to modify the16

yield stress, as presented in Section 2.5.5; however, including hardening in the model17

formulation would be a more rigorous approach in these circumstances.18

Degradation of the solution quality may stem from regions where the workpiece19

sticks to the roll surfaces. In the simulations, this results in the material falling20

below yield in the cross-shear region, which affects torque predictions. Although the21

cross-shear region is captured in the asymptotic model, the rigid plastic assumption22

renders it incapable of resolving these sub-yield regions.23

The numerics, Figure 2.5 in particular, also capture an oscillation in the position of24

the bottom neutral point as the reduction is varied. This may be related to the change25

in the sign of curvature observed in other studies (Chekmarev et al., 1956; Knight et al.,26

2003, 2005). If so, this would indicate that for a model to robustly predict curvature27

through reduction variations, it would require greater phenomenological detail than28

the present asymptotic or previous ‘slab’ models.29

Future work could incorporate more realistic materials. Although work hardening30

was approximated by modifying the yield stress based on the mean effective strain31

with this model, the asymptotic method could be used to provide a rigorous treatment32

for this or other hardening behaviours, like Smet et al. (1989); R. E. Johnson and33

R. Smelser (1992); Domanti and McElwain (1995); or Cherukuri et al. (1997). Further,34

incorporating elasticity and sub-yield behaviour may capture trends missed by the35
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present model, although this poses a significant modelling challenge. Modelling elasticity 1

may also solve the discontinuities at the entrance and exit as well as the neutral points. 2

Incorporating roll deformation could also improve predictions for foil rolling, another 3

regime this model is applicable to. 4

Finally, the prediction of curvature has been attempted by several authors (Y. 5

Hwang and T. Chen, 1996; Mischke, 1996; Salimi and Sassani, 2002) and the same 6

methods could be applied to this asymptotic model. The detail gained here could also 7

underpin future, more systematic, curvature predictions to capture the oscillations 8

discussed above. Curvature trends, and methods of curvature prediction, are discussed 9

further in Chapter 4. 10
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Chapter 3 1

Clad Rolling 2

An asymptotic model of sandwich sheet rolling, symmetric rolling of composite plates, 3

was developed in collaboration with Dr Chris Cawthorn and has been published in 4

(Cawthorn et al., 2016). The interface between the surface and inner material was 5

modelled as a free surface and is the first use of this technique in asymptotic rolling 6

models. A variation of that model is presented in this chapter, extending the asymmetric 7

model of Chapter 2, or (J. J. Minton et al., 2016), to model the rolling of a bi-metallic 8

workpiece, known as clad sheet rolling, by applying this free boundary approach. This 9

model is consistent with the asymmetric model in the limit of a homogeneous workpiece. 10

This model has been implemented in Python and verified against finite element 11

simulations using the ABAQUS/Explicit finite element package (Dassault Systemes, 12

2012a). Under any workpiece inhomogeneity, good agreement was found for roll force 13

but poor agreement for roll torque. 14

The model formulation is presented in Section 3.2 and then solved in Section 3.3. 15

Section 3.4 provides details of the finite element simulation and the comparison is 16

made in Section 3.5. 17

3.1 Introduction 18

Composite metal plates are formed from multiple bonded metal sheets; bi-metallic 19

or clad sheets specifically involve two sheets. Extensive applications exist for clad 20

sheets because material properties are able to be combined; for example corrosion 21

resistance, tensile strength or electrical conductance. These sheets are manufactured by 22

rolling multiple homogeneous sheets together, either bonded or unbonded, to produce a 23
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product of the correct gauge. Unbonded sheets can undergo bonding during the rolling1

process and then can undergo subsequent rolling to achieve the desired thickness.2

In literature, both bonded and unbonded clad sheet rolling are investigated with ex-3

periments (Eizadjou et al., 2008; Y. Hwang, T. Chen, and Hsu, 1996), numerics (Maleki4

et al., 2013; Shintani et al., 1992) and analytical modelling. The analytical models are5

extensions of models for homogeneous asymmetric rolling. These fall into two major6

categories: slab-models (Afrouz et al., 2015; Y. M. Hwang et al., 1996; Y.M. Hwang7

et al., 1996; S. Pan et al., 2008; Qwamizadeh et al., 2013, 2014; Wang et al., 2015) and8

upper-bound methods (Y. Hwang, T. Chen, and Hsu, 1996; Maleki et al., 2013; Pishbin9

et al., 2010; Shintani et al., 1992). In addition, some models predict curvature (Lee10

et al., 2015; Qwamizadeh et al., 2014; Shintani et al., 1992), see Chapter 4; bond11

formation during rolling (S. C. Pan et al., 2006; Yong et al., 2000); and symmetric12

tri-layer, or sandwich rolling (Manesh et al., 2005; Tzou et al., 2003).13

No asymptotic model has yet been proposed to model clad-sheet rolling. This14

application seems like a natural extension of the work presented in Chapter 2, especially15

in context of the asymptotic sandwich sheet rolling model in Cawthorn et al. (2016).16

Combining treatment of asymmetry from J. J. Minton et al. (2016) and the free17

boundary treatment of the material interface from Cawthorn et al. (2016), this work18

presents such a model.19

3.2 Model Formulation20

The clad model is formulated assuming solid perfect-plasticity for both metals and21

Coulomb friction for the roll-workpiece interfaces. Assumptions of small roll gap aspect22

ratio and small friction coefficient are exploited to make an asymptotic expansion. Many23

similarities exist between the work here and the previous chapter; the assumptions,24

governing equations and choice of boundary conditions are consistent between both25

models. The extension here is a free boundary within the workpiece to model the26

interface of the two materials. This boundary is assumed to be bonded, although a27

slipping friction or evolution law could be used to model unbonded or bonding sheets.28



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

3.2 Model Formulation 59

Fig. 3.1 An illustration of idealised clad sheet rolling geometry.

The variables for the material below the interface are denoted with capital variables, 1

for example the yield stress for the upper material is k̂ and the yield stress for the 2

lower material is K̂. The relevant variables are non-dimensionalised as follows. 3

x̂ = ĥ0x ĥ = ĥ0h ŷ = l̂y ĝ = ĥ0g 4

ŝxx = k̂sxx ŝxy = δβk̂sxy

p̂ = βk̂p û = û0u

v̂ = δû0v λ̂ = λ û0
k̂l̂

Ŝxx = k̂Sxx Ŝxy = δβk̂Sxy

P̂ = βk̂P Û = û0U (3.1)
V̂ = δû0V Λ̂ = Λ û0

k̂l̂
.

5

6

where p̂, ŝxx, ŝxy, û, v̂ and λ̂ are the pressure, horizontal deviatoric stress, shear stress, 7

horizontal velocity, vertical velocity and flow rate parameter respectively; ĝ is the 8

vertical position of the interface; ĥ0, l̂ and û0 are marked in Figure 3.1; k̂ is the yield 9

stress; β = µb/δ and δ = ĥ0/l̂. 10

Using this and the plane-strain condition, the non-dimensionalised governing equa- 11

tions become 12
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−β ∂p
∂x

+ ∂sxx

∂x
+ β

∂sxy

∂y
= 0

−β ∂p
∂y

− ∂sxx

∂y
+ δ2β

∂sxy

∂x
= 0

∂u

∂x
= λsxx

∂u

∂y
+ δ2 ∂v

∂x
= 2δ2βλsxy

∂u

∂x
+ ∂v

∂y
= 0

s2
xx + δ2β2s2

xy = 1,

−β∂P
∂x

+ ∂Sxx

∂x
+ β

∂Sxy

∂y
= 0 (3.2)

−β∂P
∂y

− ∂Sxx

∂y
+ δ2β

∂Sxy

∂x
= 0 (3.3)

∂U

∂x
= ΛSxx (3.4)

∂U

∂y
+ δ2∂V

∂x
= 2δ2βΛSxy (3.5)

∂U

∂x
+ ∂V

∂y
= 0 (3.6)

S2
xx + δ2β2S2

xy = K2, (3.7)

1

using, as a consequence of plane strain, −sxx, −Sxx and the incompressibility condition2

in favour of syy, Syy and the vertical flow rule.3

The top and bottom roll boundary conditions, specifically no penetration and4

Coulomb friction, are defined as,5

v(x, ht) = u(x, ht)
dht

dx
, (3.8a)6

V (x, hb) = U(x, hb)
dhb

dx
, (3.8b)7

8

and9

sxy(x, ht) = γt (βp(x, ht) + sxx(x, ht)) + 2
β
sxx(x, ht)

dht

dx
10

+ δ2

2βγtsxy(x, ht)
dht

dx
+ 2βγtp(x, ht)

(
dht

dx

)2

(3.9a)11

+ 2
β
sxx(x, ht)

(
dht

dx

)3
+O

(
δ3
)
,12

13
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1

Sxy(x, hb) = γb (βP (x, hb) + Sxx(x, hb)) + 2
β
Sxx(x, hb)

dhb

dx
2

+ δ2

2βγbSxy(x, hb)
dhb

dx
+ 2βγbP (x, hb)

(
dhb

dx

)2

(3.9b) 3

+ 2
β
Sxx(x, hb)

(
dhb

dx

)3
+O

(
δ3
)
. 4

5

where 6

γt =


µt

µb
: x < xnt

− µt

µb
: x > xnt

and γb =
 −1 : x < xnb

1 : x > xnb

. (3.10) 7

The material interface, g(x), is defined from the centreline, like ht(x) and hb(x), 8

but is solved for, using volume conservation, 9

∫ ht(0)

g(0)
u(0, y)dy =

∫ ht(x)

g(x)
u(x, y)dy 10∫ g(0)

hb(0)
U(0, y)dy =

∫ g(x)

hb(x)
U(x, y)dy. (3.11) 11

12

To ensure continuity at this interface, velocities are defined to be equal, 13

u(x, g(x)) = U(x, g(x)), v(x, g(x)) = V (x, g(x)). (3.12) 14

and similarly, to ensure forces balance, the surface tractions are defined to be equal, 15

βτs = 1
1 + δ2g′2

(
−2g′sxx + βsxy

(
1 − δ2g′2

))
16

= 1
1 + δ2g′2

(
−2g′Sxx + βSxy

(
1 − δ2g′2

))
= βTs (3.13a) 17

and τn = βp
(
1 + δ2g′2

)
+ sxx

(
1 − δ2g′2

)
+ δ2βsxyg

′
18

= βP
(
1 + δ2g′2

)
+ Sxx

(
1 − δ2g′2

)
+ δ2βSxyg

′ = Tn (3.13b) 19
20

where τs and τn are the tangential and normal traction forces on the interface and 21

derivatives in x are denoted with primes. 22

The end force and velocity conditions are also non-dimensionalised to be 23

Fin/out =
∫ ht

g
−βp+ sxxdy +

∫ g

hb

−βP + Sxxdy, (3.14) 24
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where F̂in/out = Fin/out
(
ĥt − ĥb

)
k̂, and1

2 =
∫ ht(0)

g(0)
u(0, y)dy +

∫ g(0)

hb(0)
U(0, y)dy. (3.15)2

It is also convenient to define the workpiece height throughout the roll gap, ∆h(x) =3

ht(x) − hb(x), and the total roll friction acting on a vertical element of the workpiece,4

∆γ = γt(x) − γb(x).5

3.3 Solution6

A feature of assuming the workpiece is a thin sheet, shared with slab models, is that7

the material properties have no effect on determining leading order velocity profiles.8

Consequently, with velocity continuity across the interface, the horizontal and vertical9

velocity solutions remain unchanged from the homogenous asymmetric case.10

u(0) = U (0) = 2
∆h(x) (3.16)11

12

v(0) = V (0) = −
∫ ht(x)

hb(x)

du(0)

dx
dy = −

∫ ht(x)

hb(x)

dU (0)

dx
dy = 2

∆h2

(
ht
dhb

dx
− hb

dht

dx
+ y

d∆h
dx

)
(3.17)13

Using these solutions, the leading order position of the interface can be solved to ensure14

mass conservation of each material,15

g(0)(x) = 1
∆h(0) (g(0)∆h(x) + hb(x)ht(0) − ht(x)hb(0)) . (3.18)16

Unsurprisingly, this is a stream line of the velocity field. The yield condition gives the17

longitudinal deviatoric stresses for each material,18

sxx = −syy = 1 and Sxx = −Syy = K. (3.19)19

These give flow rate parameters of20

λ(0) = − 2
∆h2

d∆h
dx

and Λ(0) = − 2
K∆h2

d∆h
dx

. (3.20)21
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The vertical force balance shows that leading order pressure is independent of y. 1

The interfacial boundary condition then shows 2

P (0) = p(0) + s(0)
xx (x, g(0)(x)) − S(0)

xx (x, g(0)(x))
β

(3.21) 3

and dP (0)

dx
= dp(0)

dx
. (3.22) 4

5

The horizontal force balance is integrated between hb and g then g and ht for 6

dp(0)

dx
=
s(0)

xy (x, ht) − s(0)
xy (x, g(0))

ht(x) − g(0)(x) and dP (0)

dx
=
S(0)

xy (x, g(0)) − S(0)
xy (x, hb)

g(0)(x) − hb(x) . (3.23) 7

Eliminating g(0)(x) from equation (3.22) and equation (3.23) gives 8

dp(0)

dx
∆h = s(0)

xy (x, ht) − S(0)
xy (x, hb) −

(
s(0)

xy (x, g(0)) − S(0)
xy (x, g(0))

)
(3.24) 9

which can be solved with the interfacial boundary condition for 10

dp(0)

dx
∆h = γt

(
βp(0) + s(0)

xx

)
+ 2
β
s(0)

xx

dht

dx
− γb

(
βP (0) + S(0)

xx

)
− 2
β
S(0)

xx

dhb

dx
11

− 2
β

dg(0)

dx

(
s(0)

xx − S(0)
xx

)
(3.25) 12

13

where the homogeneity in s(0)
xx and S(0)

xx has been used to simplify. This can be further 14

simplified, using equation (3.21), to 15

dp(0)

dx
∆h = ∆γ

(
βp(0) + s(0)

xx

)
+ 2
β

(
s(0)

xx

ht(0) − g(0)(0)
∆h(0) + S(0)

xx

g(0)(0) − hb(0)
∆h(0)

)
d∆h
dx

. 16

17

Now the indifinte integral of the horizontal force balance, with substitutions made 18

for both shear stress solutions, gives solutions for the shear stresses in terms of the 19

previously solved pressure and longitudinal stresses, 20

s(0)
xy = dp(0)

dx
(y − ht) + γt

(
βp(0) + s(0)

xx

)
+ s(0)

xx

2
β

dht

dx
21

and S(0)
xy = dP (0)

dx
(y − hb) + γb

(
βP (0) + S(0)

xx

)
+ S(0)

xx

2
β

dhb

dx
. (3.26) 22

23
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Correction Order1

The asymptotic rigour allows refinement to these solutions by iteratively solving the2

governing equations at higher orders of δ. Analogous to the homogeneous asymmetric3

case, and other thin sheet asymptotic models, the O(δ) terms are solved to be identically4

zero and terms of O(δ2) must be considered to refine the solution. Solutions to this5

order are included in Appendix B. These corrections bring increased resolution through6

thickness with the polynomial form of each variable raising an order in y. The strain7

field also becomes dependent on the leading order stress field.8

3.4 Numerical Simulations9

The commercial finite element package ABAQUS (Dassault Systemes, 2012a) was used10

to simulate the clad rolling process and assess the quality of the model presented here.11

An implicit finite element solver was used to simulate a workpiece. The workpiece was12

made of 2D plane-strain elements, CPE4R, and the rolls were circular rigid analytic13

surfaces. Since the unsupported alignment of the workpiece and the rolls was unknown14

a priori, the simulation was run so the rolls closed on a stationary workpiece before15

they began to rotate to allow the workpiece to find its own position vertically.16

Static stress analysis was used since the process is considered pseudo-steady state17

and inertia can be neglected, To further reduce shocks, pressure over-closure was18

included in the Coulomb friction surface interactions and smooth amplitude changes19

were applied to the roll closure and the initial spin up of the roll rotations.20

The geometry was defined by a 5mm workpiece that was reduced by 20% in a21

roll gap of aspect ratio 0.1. The ultimate length of the workpiece was 2000mm and22

approximately 50% of this length was rolled in the course of the simulation. 18 elements23

were used through thickness and 360 lengthwise. Friction coefficients of 0.1 were used24

for the workpiece-roll interactions on both the upper and lower surface. Although this25

should have no impact with rigid plasticity, the roll speed was 1.2ms-1.26

The cladding was incorporated by defining two sections of elements with each27

assigned materials of different yield stress. Node locations were chosen so that a row of28

nodes lay on the clad interface and no element lay across the interface. The material29

properties were chosen to match the asymptotic modelling assumptions as closely30

as possible. No hardening effects were included and a homogeneous isotropic yield31

stress was chosen for each section of the plate. ABAQUS is unable able to simulate32
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rigid-plastic materials so an elastic modulus and Poisson’s ratio of 100GPa and 0.30 1

were used. The yield stress in shear of the top material was 100MPa and the bottom 2

material was varied to form the ratio K. 3

Further detail of this finite element model can be found in Appendix D. 4

3.5 Results and Discussoin 5

It can be seen that analytically this model reduces to the homogeneous asymmetric 6

rolling model presented in Chapter 2, when g0 = ±1 or when K = 1. The discussion 7

provided there continues to be valid for these cases of this model. 8

This section will focus on the accuracy of the new asymmetry of non-homogenous 9

workpieces, where g0 ̸= ±1 and K ̸= 1. Comparisons are made between the asymptotic 10

model presented and numerical simulations described in the previous section. Figure 3.2 11

shows the force and torque results as the yield stress ratio is varied between 0.65 and 12

1.55 and as the thickness ratios varies over its entire range. 13

Agreement is good for g0 = ±1 and K = 1. The results are constant for g0 = −1 14

as the upper material forms the entire workpiece, rendering the value of K irrelevant. 15

Similarly, the results are also constant when K = 1 because the lower material is 16

identical to the upper material. The force and torque scale linearly with K for g0 = 1 17

as the lower material forms the entire workpiece, producing a yield stress scaling of 18

the previous homogenous case discussed. All these trends also occur for the numerical 19

results and the accuracy is in agreement with the findings of the previous chapter. 20

The asympototic roll force and torque predictions could generally be described as 21

an interpolation of the homogenous cases. Pressure is the dominant contribution to the 22

roll force and torque predictions and, at leading order, the gradient differes from the 23

homogenous case in the frictionless term only, which is now the average of deviatoric 24

stresses. 25

This interpolation behaviour is reflected in the numerical force predictions such that 26

the relative error of the asymptotic model does not rise above 6.5%. The numerical 27

torque predictions exhibit a more complex behaviour, however. Any of the simulations 28

conducted with inhomogeneity show an almost constant shift away from an interpolation 29

between the homogenous cases. Figure 3.3 is a cross-section of Figure 3.2 which clearly 30

illustrates this. The analytical model does not capture this behaviour so the roll torque 31

for the higher yield side is under estimated and the roll torque for lower yield side is 32

over estimated. Relative error of torque predictions rise to over 50%, although the 33
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Fig. 3.2 Roll force and torque as the cladding parameters are varied for the asymptotic
(solid wire frame) and finite element (dashed wire frame) solutions. The roll set-up is
otherwise symmetric with parameters: (ĥ0, δ, r, µ, k̂) = (0.05, 0.1, 0.20, 0.1, 100MPa).
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Fig. 3.3 Cross sections of Figure 3.2

median errors remain around 12.5%. The small thicknesses at which this jump occurs 1

could suggest a boundary layer effect that is not captured by the asymptotic model. 2

An alternative hypothesis is that elasticity causes residual stresses that curve both 3

the deformed and undeformed workpiece to significantly violate the assumption of 4

vertically aligned contact points. This was observed in the simulations and would not 5

be captured by the present model. 6

3.5.1 Distributions 7

The stress and strain distributions, Figures 3.4 and 3.5, exhibit many of the same 8

features as the asymmetric distributions. The leading order is a slab solution with 9

constant deviatoric longitudinal stresses in each material section; constant through 10

thickness pressure with a jump at the material interface; and a linearly varying through 11

thickness shear stress with no apparent jump at the material interface. The strain 12

distributions are identical to the asymmetric rolling model at this order as the effect of 13

stress distributions only influence strains at the correction order. 14

The correction order refines the through thickness distributions indicating higher 15

pressures at the roll surfaces than the centre of the workpiece, lower deviatoric stress 16
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Fig. 3.4 Pressure (top), horizontal deviatoric stress (middle) and shear stress (bottom)
fields from the asymptotic model leading order (left) corrected solution (centre) and
finite element simulations (right) for g0 = 0.4 and K = 1.25. The roll set-up is otherwise
symmetric with parameters: (ĥ0, δ, r, µ, k̂) = (0.05, 0.1, 0.20, 0.1, 100MPa).
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Fig. 3.5 Horizontal (top) and vertical (bottom) velocity fields from the asymptotic
model leading order (left) corrected solution (centre) and finite element simulations
(right) for a symmetric rolling configuration with a clad workpiece of g0 = 0.4 and
K = 1.25. The roll set-up is otherwise symmetric with parameters: (ĥ0, δ, r, µ, k̂) =
(0.05, 0.1, 0.20, 0.1, 100MPa).
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at the roll surfaces than the centre of the workpiece and no visible change to the shear1

stress. The strain distributions develop small discontinuities at the material interface.2

Lobes dominate the numerical shear results and are echoed in the other numerical3

stress results. These were observed for the asymmetric rolling simulations, are discussed4

briefly in that chapter and are more thoroughly investigated in Chapter 5.5

Looking past this, the pressure hill and value of horizontal deviatoric stress agrees6

with the asymptotic solution. Both velocity fields are also in reasonable agreement7

past a short entrance region. This entrance region shows the bending of the unworked8

material such that the workpiece does not enter the roll gap horizontally. This is9

why the workpiece thickness appears less in the numerical solution and why there is a10

uniform positive vertical velocity at the entrance.11

The complete stress field allows stress predictions along the material interface,12

which provides useful information about how the bond is affected by the process. For13

example, determining the necessary bond strength from the maximum shear stresses14

on this interface. The position of the bonded interface and the interfacial forces are15

shown in Figure 3.6 and is predicted very well except for a small discrepancy around16

the inlet. The normal force on the interface is predicted well; but the tangential17

force on the interface is predicted poorly. The position discrepancy at the inlet is18

likely a consequence of the angled entry of the workpiece and is of little concern. The19

inaccuracies in the interfacial forces are a reflection of the inaccuracies in the entire20

stress field, specifically the shear oscillations, or lobes. As these oscillations often21

dominate the value to be predicted, the present model would not be sufficient for this22

application. Further refinement would be needed to provide quantitative information23

about the bonded interface during clad rolling.24

3.6 Conclusion25

Asymptotic analysis was used to derive a model for clad rolling under the assumptions26

of perfect rigid plasticity, a small roll gap aspect ratio and weak Coulomb friction. This27

is an extension of the model presented in Chapter 2 as the same scaling assumptions28

and asymmetries are used here. The solution procedure involves solving the location of29

both neutral points to ensure leading order pressure continuity. With Coulomb friction,30

this gives a piecewise ordinary differential equation for pressure. Both the stress and31

strain fields are closed form solutions in terms of the pressure.32
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Fig. 3.6 Material interface position (top) and the normal (centre) and tangential
(bottom) forces across the material interface for a clad workpiece of g0 = 0.5 and
K = 1.25. The roll set-up is otherwise symmetric with parameters: (ĥ0, δ, r, µ, k̂) =
(0.05, 0.1, 0.20, 0.1, 100MPa).
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This model was verified against finite element simulations for varying thickness and1

yield stress ratios. The roll force prediction was found to have reasonable accuracy2

across the entire parameter range investigated; however, the roll torque predictions lost3

accuracy for any amount of inhomogeneity in the workpiece. This suggests a significant4

phenomenon of the clad rolling processes, perhaps elastic curvature, is not captured by5

the present model. Shear stress lobes are also present in the finite element simulations6

used here but absent from the asymptotic solution. The magnitudes of these lobes are7

sufficiently large that they determine the bonding strength required between the layers.8

Reducing or eliminating the shear lobes might, therefore, be practically relevant for9

rolling weakly bonded metals. The lobe phenomenon is discussed further in Chapter 5.10

Unsurprisingly the asymptotic solution is much faster to compute than the finite11

element solution.12

Further developments to this model could be made as discussed in the concluding13

remarks of Chapter 2 for the homogeneous asymmetric case; however, the significant14

roll torque discrepancy for any amount of workpiece inhomogeneity should be the focus15

of any future studies. This likely would lead to investigating the effects of elasticity16

and residual stresses on inducing curvature.17
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Chapter 4 1

Curvature Prediction 2

Curvature is an important consideration in the operation of asymmetric rolling as it 3

must fall within mill tolerances for successful operation and within product tolerances 4

for quality insurance. To more clearly ascertain the trends between induced curvature 5

and other parameters of a rolling configuration, the studies in this area were reviewed, 6

digitised and statistically analysed. The qualitative review, presented in Section 4.1, 7

revealed contradictions in the literature. In Section 4.2, regression modelling is per- 8

formed on the digitised data. While no regression model was constructed that could 9

accurately predict curvature, evidence was gained for which factors in the problem 10

are significant. Strong interaction is shown between the roll size asymmetry and 11

other geometric factors and significant dependence on material properties is found. 12

Finally, Section 4.3 provides some numerical comparison of curvature prediction models 13

presented in literature. None of the implemented models capture the non-linearities 14

observed in the digitised data. This work is to be presented at the International 15

Conference on Technology of Plasticity 2017 and initial results have been published in 16

the conference proceedings (J. Minton et al., 2017). 17

4.1 Literature Review 18

Experimental investigations into curvature can be dated back to at least 1956 and 19

attempts to model this process to 1963. Despite this long history there are few generally 20

applicable rules to describe the phenomenological trends relating workpiece curvature to 21

the rolling mill configuration. There appear to be unacknowledged correlations between 22

factors, which are missed by many studies that vary only a single parameter. Similarly, 23
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many of the analytical models are validated with a small number of experimental data1

and are untested in general mill configurations.2

Previous studies are summarised here to collate observed trends and to clarify3

correlations between factors where possible. Section 4.1.1 and Section 4.1.2 review the4

experimental and numerical literature by giving conclusions synthesised from trends5

observed in literature followed by Table 4.1 and Table 4.2, which summarise the set-ups6

and results of each publication reviewed.7

Before studies are compared, the definition and measurement of curvature requires8

some consideration. Jeswiet et al. (1998) provides a discussion on this and enumerates9

some approaches with a critique of each. Curvature is a local property and is non-10

linearly related to most aspects of the rolled workpiece geometry. The differences11

in curvature measures often reduce to how the length of the workpiece is averaged.12

Later studies more explicitly consider averaging and which regions to include to target13

leading edge behaviour, but this could equally be used to exclude leading edge effects.14

Jeswiet et al. (1998) ultimately decides to use a peculiar measure of curvature: taking15

the height above the horizontal over the horizontal component of the worked length.16

This is a flawed measure as it is dependent on the length of the workpiece. A better17

choice might be to average local curvatures, which could be non-dimensionalise against18

several parameters. The workpiece thickness, initial or final, seems the most obvious19

as curvature and thickness are the only local intrinsic geometric properties of a two20

dimensional workpiece. This is the definition of curvature adopted here, with the initial21

workpiece thickness used for ease.22

4.1.1 Experiments23

Some of the earliest studies provide the most comprehensive experiments; it is a shame24

the age often renders them unavailable or published exclusively in German, Russian or25

Japanese. Later work becomes dominated by numerical investigations, reviewed in the26

next section, and experimental work is often conducted only to validate such numerical27

models (Fu et al., 2012; Y. Hwang, D. Chen, et al., 1999). Despite these limitations,28

twelve papers presenting experimental work have been reviewed and are summarised29

in Table 4.1. From these, loose qualitative conclusions can be drawn about curvature,30

including31

• Curvature is towards the roll with faster peripheral velocity for small roll surface32

speed asymmetries, but the opposite for larger asymmetries.33
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• Curvature is towards the smaller roll for small reductions and the larger roll for 1

large reductions. 2

• Surface roughness affects curvature; however, the direction is dependent on 3

reduction. 4

• Curvature is non-linearly related to reduction with a maximum curvature related 5

to the roll gap ratio. 6

The non-specific nature of these conclusions are representative of the body of work. 7

Most studies examine trends in a single asymmetry over a few rolling configurations, 8

which often leads to conclusions contradicting other studies, of limited validity, and 9

unrepresentative of broader trends. Once multiple asymmetries are introduced the 10

convoluted effects become more unpredictable, rendering these conclusions entirely 11

inadequate. This becomes clear in publications such as W. Johnson and G. I. Needham 12

(1966) where the descriptions of trends are vague in terms of geometrical dependence. 13

A number of other, potentially significant, experimental considerations are also not 14

widely discussed. Such considerations are related to the geometry of the workpiece. 15

Insufficiently wide workpieces, compared to thickness, could result in edge effects 16

dominating the behaviour. Conclusions drawn from studies such as Buxton et al. 17

(1972), W. Johnson and G. Needham (1966), and W. Johnson and G. I. Needham 18

(1966), which have small ratios, should be cautiously applied to plane strain rolling. 19

Similarly, overly short workpieces may be dominated by end effects (Buxton et al., 1972; 20

Kennedy et al., 1958). Unfortunately, without understanding the physics that drive 21

curvature it is not possible to reason the extent of end effects and this has not yet been 22

established experimentally. The roll gap aspect ratio is another consideration never 23

explicitly discussed in these publications. It is well understood that thin and thick 24

sheet rolling, characterised by small (Pospiech, 1987) and large (Buxton et al., 1972; 25

Dewhurst, I. F. Collins, and W. Johnson, 1974; Jeswiet et al., 1998; W. Johnson and 26

G. Needham, 1966; W. Johnson and G. I. Needham, 1966; Kennedy et al., 1958) roll 27

gap aspect ratios respectively, are distinct regimes that behave differently. Comparison 28

between these sets of studies may, therefore, not be valid. 29

Smooth dry rolls slip unpredictably (Buxton et al., 1972) which adds experimental 30

uncertainty to the process as transitions between sticking and slipping friction regimes 31

significantly change the effect of friction. Care must be taken when measuring force, 32

torque and curvature to identify if a transition has occurred. Despite many of these 33

studies working within this regime (Jeswiet et al., 1998; W. Johnson and G. Needham, 34
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1966), Buxton et al. (1972) is the only one of these publications to identify this1

behaviour.2

Lastly, Tanaka et al. (1969) concludes that smaller Young’s modulus produces3

greater curvature. Unfortunately, many studies do not characterise the material4

behaviour, rendering them directly incomparable.5

Further to considerations of experimental design, few papers discuss the mechanism6

that produces curvature. Chekmarev et al. (1956) is a notable exception in which7

a hypothesis of two independent mechanisms is proposed: friction pushes material8

against the faster roll through the roll gap more quickly so the workpiece curves away9

from the faster roll; and simultaneously, the smaller roll produces a bigger reduction10

so the workpiece is pushed away from the smaller roll. This hypothesis was rejected,11

however, as experiments performed in the same paper do not support it; the aggregated12

conclusions presented here do not generally support it either.13
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Table 4.1 Summary of Experimental Investigations into Curvature

Reference Geometry Material Controlled Vari-
ables

Key Results Notes

Chekmarev et al.
(1956)

10-35x45mm
workpiece;
87.5-105mm ra-
dius rolls;
10-70% reduction

Aluminium;
lead and steel

Roll size;
reduction;
initial thickness

Curvature is towards the small roll under
small reductions and towards the large roll
under large reductions forming a cubic
type curve. Initial thickness influences the
shape of this curve. Asymmetric roll size
with equal surface speed did not change
this trend.

Originally published
in Russian; British
Library Translation,
R.T.S. 8939.

Kennedy et al. (1958) 63x146-178mm
workpiece;
380mm radius rolls;
25% reduction

Hot steel Roll speed ratio;
torque ratio

Roll speed asymmetry has more effect on
curvature than roll torque. Roll speed
asymmetry affects curvature for both
transient and steady-state rolling. A linear
relationship exists between speed ratio
and curvature but with different slopes for
each set-up.

Both torque and
speed regulated
set-ups used.

W. Johnson and G.
Needham (1966)

6x25x150mm
workpiece;
16-29mm radius rolls;
13-48% reduction

Tellerium lead Roll size;
roll speed;
reduction

Curvature is towards the slower roll.
Curvature varies over reduction with some
finite maximum value.

Conference paper.

W. Johnson and G. I.
Needham (1966)

6x25x150mm
workpiece;
16-29mm radius rolls;
13-48% reduction

Tellerium lead Roll size;
roll speed;
reduction;
roll surface finish

Curvature is not always towards the
slower roll, generally increases with greater
reduction and decreases with rougher rolls.
Curvature direction changes at specific
reductions, with increasing roughness at
small reductions and is dependent on roll
speed.

Continues from W.
Johnson and G. Need-
ham (1966).

Tanaka et al. (1969) 2-high mill Brass Roll size Curvature is towards the smaller roll.
Curvature is greater for lower Young’s
modulus.

Strong asymmetry
wrapped the work-
piece around roll so
no trend could be
identified.
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Table 4.1 Summary of Experimental Investigations into Curvature

Reference Geometry Material Controlled Vari-
ables

Key Results Notes

Buxton et al. (1972) 20x38x152mm
workpiece;
70mm radius rolls;
25% reduction

Standard hard plas-
ticine

Roll speed;
entry angle

For given angle of entry curvature is
proportional to roll speed ratio. Slip can
affect curvature.

Specifically investi-
gates leading edge
bending.

Dewhurst, I. F.
Collins, and W.
Johnson (1974)

3-8x51x152mm
workpiece;
72-75mm radius rolls;
20-40% reduction

Commercially pure
lead

Roll size;
roll speed;
initial workpiece
thickness

A relationship between reduction and roll
gap aspect ratio is presented that predicts
maximum strip curvature. Near this,
curvature is towards the larger/faster roll
for small asymmetries.

Results compared
qualitatively well
with a slip-line
model.

Pospiech (1987) 25.5x0.92x150mm
workpiece;
57mm radius roll;
6-73% reduction

99.9% pure annealed
aluminium

Roll roughness;
lubrication

Surface finish and lubrication can affect
curvature. Curvature only changes sign
with increasing reductions under some
circumstances.

Quantitative results
were not presented.

Jeswiet et al. (1998) 3x32x305mm
workpiece;
51mm radius roll;
20-55% reduction

3003 aluminium Roll speed;
reduction

Increasing speed asymmetry increases
curvature but curvature direction depends
on reduction.

Also compared to
FEM.

Y. Hwang, D. Chen,
et al. (1999)

3.2-6.0x80x300mm
workpiece;
105mm radius roll;
5-35% reduction

Aluminium
A1050P-H16;
aluminium A1050P-F

Roll size with fixed
angular velocity;
reduction;
initial thickness

Curvature is towards the smaller/slower
roll for small reductions and towards the
larger/faster roll for large reductions.

Presented as valida-
tion of FEM.

Fu et al. (2012) 8mm work-
piece thickness;
90mm roll radius;
10-12.5% reduction

7150 aluminium Roll speed ratio;
angle of entry

Angle of entry changes curvature direction. Presented to validate
FEM.

Li et al. (2016) 5x60x200mm
workpiece;
50mm roll radius;
30,50% reduction

AA1060 aluminium Roll speed ratio;
angle of entry;
reduction

A roll speed ratio can be found to produce
zero curvature for a given reduction and
angle of entry.
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4.1.2 Numerics 1

Numerical studies of curvature began as early as 1988; however, these early investiga- 2

tions focused around validating finite element methods against experimental results. 3

Since then, numerous studies have been conducted to investigate many aspects of 4

curvature, including the effect of roll size, roll speed, friction, temperature gradients, 5

reduction, aspect ratio and combinations of the above. Twenty of these studies have 6

been summarised in Table 4.2. 7

Many of the same trends found in the experimental literature arise from numerical 8

studies. The comparatively low cost of simulations, compared to experiments, means 9

numerical studies investigate many more parameters than the experimental studies. 10

Aggregated conclusions from these works are summarised by 11

• Curvature is towards the faster (J. Yang et al., 2017) or the slower (Shivpuri 12

et al., 1988) roll dependening on the roll gap aspect ratio (Knight et al., 2003, 13

2005; Yoshii et al., 1991) and reduction (Harrer et al., 2003; Y. Hwang, D. Chen, 14

et al., 1999; Knight et al., 2003, 2005; Philipp et al., 2007). Small roll gap aspect 15

ratios curve towards the slower roll and larger roll gap aspect ratios curve towards 16

the faster roll (Knight et al., 2005; Salganik et al., 2014); and greater surface 17

speed asymmetry produces greater curvature magnitude (Fu et al., 2012; Harrer 18

et al., 2003; Philipp et al., 2007). 19

• Curvature is towards the larger (Farhat-Nia et al., 2006) or the smaller (Dvorkin 20

et al., 1997) roll dependening on the roll gap aspect ratio (Farhat-Nia et al., 2006) 21

and the workpiece reduction (Y. Hwang, D. Chen, et al., 1999; Knight et al., 22

2003); although neither has been seen to change the sign of curvature. 23

• Considering constant ratios of angular velocity, curvature has been observed 24

towards the smaller/slower roll for small reductions and towards the larger/faster 25

roll for large reductions (Lu et al., 2000); and, towards the larger/faster roll for 26

small reductions Kawałek, 2004 and towards the smaller/slower roll for large 27

reductions. 28

• Curvature is towards the roll with higher friction (Y. Hwang, D. Chen, et al., 29

1999; Knight et al., 2003; Richelsen, 1997; Yoshii et al., 1991) or the roll with 30

lower friction (Dvorkin et al., 1997). Curvature doesn’t change direction with roll 31

gap aspect ratio (Anders et al., 2012) or reduction (Y. Hwang, D. Chen, et al., 32

1999); although, some value of reduction produces maximum curvature (Richelsen, 33
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1997) and curvature magnitude increases with increasing asymmetric friction1

ratio (Anders et al., 2012).2

• Curvature is towards the colder surface of the workpiece (Dvorkin et al., 1997).3

• Feed offset can induce curvature in otherwise symmetric rolling (Dvorkin et al.,4

1997; Seo et al., 2016).5

• Curvature is dependent on material properties (Markowski et al., 2003).6

Compared to experimental studies, numerical methods also provide unprecedented7

detail about what is occurring within the workpiece, which has been used to investigate8

hypotheses and propose more refined curvature mechanisms. The first of these proposed9

that curvature is driven by a growing region of cross-shear. Akbari Mousavi et al.10

(2007) discusses this explicitly and shows that it is, at best, insufficient; comparing the11

cross-shear region from surface shear stress plots with curvature shows no correlation.12

Akbari Mousavi et al. (2007) went on to hypothesise that curvature is driven by13

horizontal plastic strains and the mechanism acts like an Euler-Bernoulli beam. This14

is also incomplete as curvature, in some configurations, can be predominantly driven15

by shear (Richelsen, 1997).16

Anders et al. (2012) presents a comprehensive study of a non-dimensional parameter17

space. The relevant parameters are identified and explored, with the results presented18

as contour plots that show the structure of interacting parameters. Yoshii et al. (1991)19

is also worth noting for their evidence based discussion of curvature mechanisms.20

Features of the stress and strain fields are used to explain the observed curvature21

results.22
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Table 4.2 Summary of Numerical Investigations into Curvature

Reference Geometry Material & Fric-
tion

Numerical Im-
plementation

Controlled Vari-
ables

Key Results Notes

Shivpuri et al.
(1988)

2.5" workpiece;
3.8" radius roll;
25% reduction

Elastic-plastic
material with
power-law
strain hardening;
friction factor

Explicit time
stepping;
1120 triangu-
lar plane-strain
elements

Roll speed FEM matches experimental results
from Kennedy et al. (1958):
curvature is towards the slower roll.

Impact force re-
duction factor
used on entry. 90
elastic elements
used for the rolls.

Yoshii et al. (1991) 10-100mm work-
piece thickness;
574mm ra-
dius rolls;
10-30% reduc-
tion

Rigid-perfectly
plastic;
Coulomb fric-
tion

320 elements;
non-steady state

Roll speed ratio;
friction ratio;
reduction;
initial thickness;
temperature
gradient

Curvature is towards the slower roll
for thin sheets and the opposite for
thick sheets. Curvature towards the
faster roll is due to deformation
along the slower roll near the exit;
curvature towards the slower roll is
due to deformation along most of the
faster roll. Curvature is towards the
side of larger friction and towards
the side of lower temperature.

Torsional vibra-
tion model of the
driving system
included in simula-
tion. Experiments
were conducted to
validate the FEM.

Dyja et al. (1994) 4-10mm work-
piece thickness;
500mm radius roll;
5-20% reduction

Huber-Mises
rigid plasticity;
non-linear relative
slip friction

Coupled plastic
flow and diffu-
sion equations.
Solver described
in Pietrzyk et al.
(1991).

Roll rotation;
friction co-
efficients;
angle of entry;
reduction

No conclusions drawn. No meshing infor-
mation provided.
Curvature is not
quantified.

Dvorkin et al.
(1997)

2.75-112.21mm
workpiece
thickness;
320-408mm
roll radius;
18-40% reduc-
tion

Temperature
dependent, rigidly-
perfect plasticity;
friction factor
with transition
smoothing

Explicit Eule-
rian plane-strain
formulation;
based on the
flow formulation
and the pseudo-
concentrations
technique

Roll radius ratio;
friction ratio;
temperature
profile;
feed offset

Curvature is towards the smaller,
lower friction or colder side of the
workpiece. Curvature is in the same
direction as feed offset.

METFOR soft-
ware package
used.
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Table 4.2 Summary of Numerical Investigations into Curvature

Reference Geometry Material & Fric-
tion

Numerical Im-
plementation

Controlled Vari-
ables

Key Results Notes

Richelsen (1997) 0.12 aspect ratio;
10-60% reduction

Aluminium
as elastic-
viscoplastic;
Wanheim et al.
(1978) friction
model

Explicit time
stepping with
rate tangent
modulus method;
1764 quadrilateral
elements each with
four triangular lin-
ear plane-strain
elements

Roll friction;
reduction

Curvature is towards the higher
friction roll and larger friction
asymmetry induces larger curvature.
Maximum curvature occurs at 3̃0%
reduction.

Y. Hwang, D.
Chen, et al. (1999)

6-10mm work-
piece thickness;
93-105mm
roll radius;
5-30%reduction

Unspecified ma-
terial behaviour;
yield limited
Coulomb friction

Plane-strain
explicit solver
with dynamic
remeshing;
500 element
workpiece;
steady-state
termination condi-
tions

Roll speed ratio;
roll radius ratio;
friction ratio;
reduction

Curvature changes sign with
reduction for asymmetric size and
speed but not friction. Curvature is
towards the roll with higher friction.

DEFORM soft-
ware package used
and validated with
experiments.

Lu et al. (2000) 5-10mm work-
piece thickness;
72.5-204mm rolls;
20-40% reduction

Elastic-plasticity
with strain
hardening;
Coulomb fric-
tion

Central difference
time stepping;
368 4-node, bi-
linear, reduced
integration, hour-
glass controlled,
plane-strain ele-
ments

Roll radius
with fixed an-
gular velocity;
reduction

Increasing initial thickness increases
curvature towards the
smaller/slower; increasing reduction
increases curvature towards the
larger/faster. Curvature changes
sign as the roll size increases and
thin sheet curvature is more
sensitive to roll size.

Rolls modelled
with 179 2-node,
linear rigid ele-
ments.
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Table 4.2 Summary of Numerical Investigations into Curvature

Reference Geometry Material & Fric-
tion

Numerical Im-
plementation

Controlled Vari-
ables

Key Results Notes

Knight et al.
(2003)

54.22 and
206mm work-
piece thickness;
600mm radius roll;
10-40% reduction

High-temperature
low-carbon steel as
elastic-plasticity
with strain-rate
and tempera-
ture dependence;
sticking Coulomb
friction

Explicit time
stepping;
800 4-node, bi-
linear, reduced
integration, plane-
strain elements

Friction ratio;
roll speed ratio;
average roll speed;
average friction;
through thick-
ness tempera-
ture gradient;
reduction

Curvature is towards the higher
friction roll, but curvature from
asymmetric roll speed depends on
the roll gap aspect ratio and
reduction where the aspect ratio can
change the direction of curvature

The reversing
rougher of Corus,
Port Talbot, hot
mill used to test
proposed zero
curvature regime.

Markowski et al.
(2003)

2.22-3.13mm work-
piece thickness;
670mm roll;
10-25% reduction

Rigid-plastic with
strain, strain-rate
and tempera-
ture dependence;
unspecified fric-
tion

Steady-state
Eularian FEM;
unspecified dis-
cretisation

Roll radius ratio Curvature is dependent on the roll
asymmetry, aspect ratio, relative roll
size and material properties.

Complete set-
up included in
Pietrzyk et al.,
1991. The EL-
ROLL software
package was used.

Harrer et al.
(2003) and Philipp
et al. (2007)

28-150mm work-
piece thickness;
500mm roll radius;
0-60% reduction

Structural steel
S235JRG2 at
1000◦Cas elasto-
plastic with
modified Hansel
and Spittel
stress function;
yield limited
Coulomb friction

2D implicit time
stepping FEM;
Unknown number
of CPE4 (4-node
plane strain)
elements.

Roll speed ratio;
reduction

Curvature is towards the faster roll
for small reductions and towards the
slower roll for large reductions. The
reduction where the curvature
changes direction increases with
sheet thickness. Very thick sheets do
not change curvature direction.
Larger velocity asymmetry and
thinner sheets produce greater
curvature.

Qualitative re-
view included.
The
ABAQUS/Standard
software package
used.

Kawałek (2004) 2.1-8.3mm work-
piece thickness;
320-660mm rolls;
7-40% reduction

Steel as perfect-
plasticity with
strain-rate and
temperature
dependence;
friction unspeci-
fied

Roll size with fixed
angular velocity;
reduction;
workpiece thick-
ness

Curvature is towards the
larger/faster roll for small reductions.
Curvature increases with larger
asymmetry and smaller reductions.

Unspecified nu-
merical method
and discretisation
but ELROLL and
FORGE2 software
packages used.
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Table 4.2 Summary of Numerical Investigations into Curvature

Reference Geometry Material & Fric-
tion

Numerical Im-
plementation

Controlled Vari-
ables

Key Results Notes

Knight et al.
(2005)

54.2-206mm work-
piece thickness;
10-40% reduction;
60mm roll radius

Elastic-plasticity
with strain, strain-
rate and temper-
ature dependence;
Coulomb friction

Explicit time
stepping;
~800 (geome-
try dependent)
4-node, bilinear,
reduced integra-
tion, plane-strain
elements

Initial thickness;
reduction

Thick sheets increase curvature with
reduction, medium sheets peak
curvature and thin sheets curvature
direction changes. Curvature is
towards the slower roll with small
reductions and towards the faster
roll with large reductions. Friction
has a bigger influence for curvature
towards the faster roll.

Fixed asymmetric
roll speed of 0.95.
ABAQUS/Explicit
software package
used.

Farhat-Nia et al.
(2006)

5mm thickness;
50-100mm
roll radius;
12-40% reduc-
tion

Aluminium strip
as elastic plastic-
ity with von-Mises
yield and isotropic
strain-hardening;
Coulomb friction

Arbitrary
Lagrangian-
Eulerian 2D FEM;
800 4-node quadri-
lateral elements

Roll size;
roll speed;
reduction

Curvature is towards the larger roll
with a maximum at a given aspect
ratio; a direction change occurs for
some roll geometries and speed
ratios.

Generalised ALE
code developed
by Gadala et al.
(2000)

Akbari Mousavi et
al. (2007)

2x80mm
workpiece;
105mm roll radius;
13-37% reduction

Aluminium
1050P as elastic-
plasticity with
power-law strain
hardening;
friction factor
limited Coulomb
friction

3D explicit time
stepping FEM

Roll speed ratio Curvature is towards the surface
with less normal plastic strain.
Curvature does not necessarily
increase with a larger cross-section
region. Curvature also depends on
the roll gap aspect ratio.

Discretisation
was unspecified.
ABAQUS/Explicit
software package
used; experimen-
tal and analytical
validation with Y.
Hwang and Tzou
(1997)
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Table 4.2 Summary of Numerical Investigations into Curvature

Reference Geometry Material & Fric-
tion

Numerical Im-
plementation

Controlled Vari-
ables

Key Results Notes

Anders et al.
(2012)

Presented non-
dimensionally

Rigid plastic
with von Mises
yield and asso-
ciated flow rule;
yield limited
Coulomb friction

Isoparametric
quadrilateral
plane-strain ele-
ments with linear
shape functions

Friction;
roll speed;
reduction;
roll gap aspect
ratio

Asymmetric velocity has a stronger
affect on curvature than asymmetric
friction but is more dependent on
geometry, changing the curvature
direction in some cases.
Comprehensive figures of curvature
as roll gap geometry is varied for a
range of asymmetries.

Presents a di-
mensional anal-
ysis argument.
Marc/Mentat
software package
used.

Fu et al. (2012) 200-300x3000mm
workpiece
thickness;
263.5-412.5mm
roll radius;
6-25% reduction

7150 aluminum
alloy at 410◦Cas
elasto-plastic
material with em-
pirical strain-rate
and work hard-
ening; sticking
limited Coulomb
friction

Four-node plane-
strain full in-
tegration work-
piece elements;
rigid analytic rolls
and roll table

Roll speed ratio;
roll radius;
reduction;
initial thickness;
angle of entry

Curvature increases then decreases
with angle of entry. The effect of
entry angle depends on workpiece
thickness and roll size. Larger
velocity asymmetry or larger
reduction increases curvature.

Marc/Mentat
software package
used. Validated
by experiments.

Hao et al. (2013) 2mm work-
piece thickness;
240-288mm
roll radius;
10-40 % reduc-
tion

Q235 Steel as
elastic-plasticity
with strain
hardening;
yield limited
Coulomb friction

Explicit dy-
namic, ALE FEM;
4-node bilinear,
reduced integra-
tion, hourglass
controlled, plane-
strain elements

Roll size with
constant an-
gular velocity;
reduction

The cross-shear region increases
with roll surface speed ratio. An
asymmetric roll size/surface speed
exists to produce zero curvature for
a given reduction.

ABAQUS/Explicit
software package
used. Rolls are lin-
ear discrete rigid
elements. Experi-
mental validation
of the model and
zero curvature
configuration
included.
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tion

Numerical Im-
plementation

Controlled Vari-
ables

Key Results Notes

Salganik et al.
(2014)

8-50mm work-
piece thickness;
575mm ra-
dius rolls;
5-40% reduction

Low alloy steel
at 800-1000◦Cas
visco-plastic;
friction factor

Speed ratio;
temperature;
initial thickness

Curvature is towards the slower roll
for thin sheets and towards the
faster roll for thick sheets.
Temperature and thickness were also
found to be factors.

Numerical method
and workpiece
discretisation un-
specified and rigid
rolls. DEFORM
software package
used.
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4.1.3 Analytical Models 1

The first publication, found in this review, to predict curvature was Tanaka et al. 2

(1969). This is a semi-empirical model for roll indentation, from which a quadratic 3

distribution of longitudinal residual stress and then curvature is estimated. This 4

paper was published in the Journal of Japanese Institute of Metals and, unfortunately, 5

no translation has been found. Since this, models based on one of three different 6

methods have been proposed; the slip-line method, the upper bound method and slab 7

approximations. 8

Slip-Line Models 9

Slip line models have been applied to model rolling as early as 1955 (Alexander, 1955). 10

Complex phenomena can be captured with comparably few calculations, suitable for 11

human and early computers; however, a priori knowledge is required to specify the 12

form of the slip-lines. Two slip-line models of asymmetric rolling (I. Collins et al., 1975; 13

Dewhurst, I. F. Collins, and W. Johnson, 1974) were presented before popularity in 14

this area faded. The increasing complexity of these models made further developments 15

increasingly unwieldly. They are also limited to plane-strain, quasi-static processes 16

involving rigid plastic materials. 17

Dewhurst, I. F. Collins, and W. Johnson (1974) generalizes from a symmetric rolling 18

model that was shown to be accurate for specific combinations of reduction and roll 19

gap aspect ratio. A closed form solution of curvature was derived using compatibility 20

conditions in the model but this model is only valid for small asymmetries around this 21

reduction-aspect ratio curve but a allow 22

I. Collins et al. (1975) presents a more general slip-line solution. It is formulated 23

using a matrix technique developed, with a FORTRAN implementation, in Dewhurst 24

and I. F. Collins (1973). This technique expands the radius of curvature of each slip-line 25

as a power series in the angular coordinate. A matrix is formed from the relations 26

between slip lines. The rolling problem is then defined by this set of linear equations 27

which must be solved numerically to satisfy twelve force balance and compatibility 28

conditions. This model shows curvature changing sign with varying roll size ratio and 29

roll speed ratio, the only analytical model that does so. It was compared to results 30

from Chekmarev et al. (1956) and produces reasonable quality predictions. 31
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Upper Bound Models1

The first use of an upper bound model for curvature prediction was M. Kiuchi et al.2

(1987). Roll size ratio, roll speed ratio and the workpiece angle of entry were included3

parameters. Shivpuri et al. (1988) reports that this model agrees well with experimental4

results over asymmetric roll sizes (Nakajima, 1980, 1984) but poorly over asymmetric5

roll speed ratios (Dewhurst, I. F. Collins, and W. Johnson, 1974; W. Johnson and6

G. Needham, 1966; W. Johnson and G. I. Needham, 1966).7

Y. M. Hwang et al. (1996) also used an upper bound model to predict curvature.8

The flow field is determined by specifying a quadratic stream function within the roll9

gap and matching this to a stream function of uniform flow. The upper-bound is10

minimised against three parameters; the flow rate, one of the inlet contact points and11

a parameter characterising the inner flow. Results are presented over varying roll size12

ratios showing better agreement than the slip-line model of Dewhurst, I. F. Collins,13

and W. Johnson, 1974.14

Slab Models15

Since slab models were first used to predict curvature, in 2002, no fewer than five16

variations have been published. Generally, these models use assumptions of stress or17

strain distributions through thickness to approximate full strain fields, from which18

predictions of curvature are made using further assumptions about the curvature19

mechanism.20

Salimi and Sassani (2002) presents the first of these models: a modified slab model21

that solves a differential equation for the roll pressure on slab elements. Friction factor22

and the yield condition make this sufficient to solve for the roll-workpiece interface23

stress distribution. Averaging, with an additional weighting parameter, between the24

interface and centre-line shears determines the effective stress field of the top and25

bottom halves of the workpiece. Some justification for the value of this coefficient is26

provided for a linear through-thickness shear distribution. Curvature is then predicted27

as the sum of two curvature mechanisms: mean shear strain through the roll gap and28

differential longitudinal strain between the top and bottom halves of the plate. A29

comparison was made to results from Buxton et al. (1972); Kennedy et al. (1958); and30

Shivpuri et al. (1988).31

Gudur et al. (2008) presents a model similar to this: curvature is calculated32

identically to Salimi and Sassani (2002) but differential equations for average shear33
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elements, pressure on the top surface and pressure on the bottom surface are solved as a 1

system, which allows for asymmetric roll sizes. Strain-hardening behaviour is included 2

and friction is chosen to be the transition model from Wanheim et al., 1978. The shear 3

stress distribution was taken to be linear, eliminating the additional parameters of 4

Salimi and Sassani (2002). The curvature model performs well against results from 5

Shivpuri et al. (1988); Y. Hwang and Tzou (1997); and Salunkhe (2006). This model 6

is then used in an inverse problem: predicting the friction coefficients from observed 7

curvature. 8

Gong et al. (2010), like Salimi and Sassani (2002), derives a single differential 9

equation for horizontal stress through the roll gap using Coulomb friction. A roll 10

torque estimate is then made for the top and bottom rolls and the resulting moment 11

balance is satisified with a moment assumed to be applied to the outlet workpiece. This 12

model is appealing as it is dependent on both the yield stress and Young’s modulus, 13

factors known to be relevant from the previous review sections, but is questionable as 14

elastic bending is assumed to be the sole mechanism of curvature. It is not compared 15

to numerical or experimental results. 16

Qwamizadeh et al. (2011) presents a model similar to Gudur et al. (2008), except 17

with Coulomb friction, no hardening behaviour and a more complex through thickness 18

shear profile. The form of the shear stress is assumed to be quadratic through thickness, 19

where the three coefficients are chosen to satisfy the yield stress condition on the top 20

and bottom surfaces and the mean shear stress from the differential equations. 21

Farhatnia et al. (2011) presents a model including a hardening elastic-plastic 22

material and a friction factor law. Three differential equations are solved explicitly for 23

the shear force, the mean tension in the strip and the bending moment. Curvature 24

was calculated from the same two mechanisms presented in Salimi and Sassani (2002), 25

only the axial component was calculated from elastic and plastic deformations due to 26

bending moments. Curvature results were not compared to simulation or experiment. 27

Aboutorabi et al. (2016) attempts to treat non-vertically aligned contact points in 28

a manner similar to the work presented in Chapter 6. A differential equation is solved 29

with a flat free surface and no traction force over an inlet region where the workpiece 30

contacts one roll only. The curvature calculation includes an additional bending to the 31

two mechanisms identified by Salimi and Sassani (2002) due to the region with a free 32

surface. This matches moderately well to finite element simulations presented in this 33

study. 34
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4.2 Numerical Comparison1

It is clear from the previous section that the relationship between the rolling configura-2

tion and curvature is complex and existing analytical have not been validated over such3

a large parameter space. A qualitative description of the observed trends is insufficient4

due to the interaction between parameters. This has resulted in contradictory conclu-5

sions from studies on this subject. The data from fifteen studies have been digitised6

and collectively analysed to reconcile these conclusions, provide a more holistic view of7

the processes and identify key parameters or interactions that drive curvature.8

To improve comparability, the curvatures are non-dimensionalised by the workpiece9

thickness throughout the following analysis. Workpiece thickness was chosen as the10

only other local and intrinsic dimension in plane-strain rolling.11

4.2.1 Data Collection12

Digitisation was conducted using an online application1 after digitally extracting the13

figures from each publication. The publications used were those that included sufficient14

detail to reproduce the work; those not specifying sufficient detail to determine the15

workpiece thickness, roll gap aspect ratio, workpiece reduction, friction ratio, roll16

speed ratio, roll size ratio, yield stress and Young’s modulus were omitted. Many17

publications did not quantify the curvature results, present the quantified values,18

or provide the detail required so ultimately only four papers with an experimental19

component (Buxton et al., 1972; Dewhurst, I. F. Collins, and W. Johnson, 1974; W.20

Johnson and G. Needham, 1966; W. Johnson and G. I. Needham, 1966) and eleven21

papers with a numerical component (Akbari Mousavi et al., 2007; Farhat-Nia et al.,22

2006; Hao et al., 2013; Kawałek, 2004; Knight et al., 2003, 2005; Lu et al., 2000; Philipp23

et al., 2007; Shivpuri et al., 1988; J. Yang et al., 2017) were digitised for a total of 113024

data points.25

Workpiece-roll surface friction model26

There is no obvious comparison between friction metrics. Friction factor and Coulomb27

friction coefficients require a pressure estimate and yield stress to compare and experi-28

mental studies typically report surface roughness, which has even greater dependence29

on unknown parameters such as the roll material and workpiece surface finish.30

1www.arohatgi.info/WebPlotDigitizer/app/
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This problem is made easier by considering a ratio of friction effects only. Friction 1

factor and Coulomb friction coefficients are non-dimensional making a ratio of these 2

meaningful. Yield limited Coulomb friction, transitioning to friction factor when 3

Coulomb friction exceeds the yield condition, complicates a simple ratio and is common 4

with simulations. The ratio of Coulomb friction coefficients will be used for this work 5

as friction is rarely limited in cold rolling and the friction factor model is often used in 6

hot rolling simulations. 7

Surface roughness remains a challenge as the relation between surface roughness 8

and friction effects is highly non-linear. It would be possible to treat each experimental 9

configuration of friction as a categorical variable, which would effectively fit a friction 10

coefficient to each group of data; however, the limited size of this dataset makes this 11

approach susceptible to over fitting given the large number of configurations. This 12

would be especially egregious if material properties are treated similarly. 13

A more systematic solution can be found for most cases as many also present 14

force and torque results. The inverse of analytical models for torque can be used 15

to estimate friction coefficients. Specifically, the slab model presented in Salimi and 16

Sassani (2002) was used to determine friction factor coefficients. The coefficients derived 17

from each torque data point of a given experimental configuration were averaged for 18

final coefficients before taking the ratio. 19

Table 4.3 Assumed Friction Ratios

Paper (Roll roughness top/bottom in µm) Friction ratio estimate
W. Johnson and G. Needham (1966) (0.43/0.025) 2.5
W. Johnson and G. I. Needham (1966) (0.64/0.43) 1.77
W. Johnson and G. I. Needham (1966) (3.05/0.43) 4.17

Ultimately, this process was only applied to W. Johnson and G. Needham (1966) 20

and W. Johnson and G. I. Needham (1966) as Jeswiet et al. (1998) was the only other 21

experimental work with asymmetric friction but did not present torque results. The 22

ratio of friction coefficients used for each case are presented in Table 4.3. These results 23

seem reasonable: the magnitudes are congruent with the simulations data and the 24

non-linearity discussed previously means non-monotonicity is plausible. Of course, 25

the quality of these results depends on the accuracy and sensitivity of the torque 26

predictions over the range of parameters within the regression. This is difficult and 27

time consuming to determine so these values are used knowing the impact this may 28

have on the regression. 29
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Material model parameterisation1

A similar issue arose for estimating material parameters: materials are difficult to2

compare when strain rate hardening, work hardening and temperature dependence are3

significant. An ideal approach would be to estimate the effective yield stress within the4

roll gap; however, there is insufficient information in each publication to reconstruct5

the experiments with this detail, even if the computation were feasible. Parameterising6

hardening curves alleviates the need for computation but results in excessive parameters7

for the regression, leading to over fitting. Alternatively, workpiece material could be8

treated as a categorical variable; however, this also faces the issue of over fitting.9

The parameter space was reduced by taking the ratio of yield stress and Young’s10

modulus, which is dimensionally justified. A nominal yield stress value was chosen11

for the hardening materials and values were chosen from available datasets for studies12

where only the material name was given. These are specified in Table 4.4 where E is13

the Young’s modulus and σeff is the effective yield stress, converted to shear in the14

table.15

Many of the materials have a wide range of values for both the yield stress and16

Young’s modulus. This will result in noise within the results of the statistical analysis17

and produce a poorer fit for any regression.18

Logging Asymmetric Parameters and Material Properties19

The three asymmetric parameters: roll radius ratio, roll speed ratio and surface friction20

ratio; are presented as ratios in most literature. This places the symmetric case at21

unity and obfuscates the vertical symmetry of the process. Logging each asymmetric22

ratio moves the symmetric case to zero and captures the vertical symmetry as an23

anti-symmetric function in these three variables.24

The form of the other parameters are less obvious. The ratio of yield stress to25

Young’s modulus and the roll gap aspect ratio could also be logged as ratios; it is26

unclear if the inverse of either group should be used instead. Similarly, the reduction27

could be expressed as a ratio of inlet to outlet thicknesses, 1 − r. Logging this ratio has28

the added appeal of zero reduction, causing zero curvature, also being at the origin.29

4.2.2 Initial Observations30

Plotting these results provides rudimentary insight into the underlying trends. Cur-31

vature against each of the three asymmetries is plotted in Figure 4.1 with the two32
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Table 4.4 Assumed Material Values

Paper Material Name σeff/
√

3(MPa) E(GPa)
W. Johnson and G. Needham (1966) Tellerium lead 8.66e6 1 14.02

W. Johnson and G. I. Needham (1966) Tellerium lead 8.66e61 14.02

Buxton et al. (1972) Plasticine 0.88 0.0033

Dewhurst, I. F. Collins, and W. Johnson (1974) Pure commerical lead 8.084 13.85

I. Collins et al. (1975) Steel 62.15 2006

Shivpuri et al. (1988) Mild steel 62.15 200.05

Lu et al. (2000) Steel C15 98.2 550.06

Knight et al. (2003) Low carbon steel 43.3 76.0
Markowski et al. (2003) Steel 05XA 115.0 7 200.07

Kawałek (2004) 110-coded grade steels 115.5 7 200.07

Knight et al. (2005) Hot low carbon steel 34.6 76.0
Farhat-Nia et al. (2006) Unspecified 29.0 68.0

Philipp et al. (2007) Steel S235JRG2 19.2 985.08

Akbari Mousavi et al. (2007) Aluminium 1050P 72.21 71.01

Hao et al. (2013) Q235 Steel 138.6 210.0
J. Yang et al. (2017) Aluminium AA7050 155.0 70.0

1 www.azom.com
2 www.ascelibrary.org
3 Sofouoglu and Rasty, (2000). Flow behavior of Plasticine used in physical modeling of metal forming processes. Tribology International.
4 www.ila-lead.org
5 www.wikipedia.com
6 www.matbase.com
7 www.matweb.com
8 www.steel-grades.com

geometry and one material parameters indicated by colour. Curvature towards the 1

slower roll is the only trend that can be discerned from these plots. A trend of curvature 2

towards the smaller roll might also be present but this is not a strong trend. It also 3

appears that reduction might be able to reverse curvature under all three asymmetries 4

and the roll gap aspect ratio could increase curvature from roll surface speed ratios 5

and friction ratios. 6

A clear set of extreme curvature values are also apparent. These correspond to 7

low yield stress to Young’s modulus ratios from plasticine experiments. It is initially 8

unclear whether these data should be excluded as outliers; their extreme curvature 9

values could distort the analysis, but including them could increase the parameter 10

range and improve accuracy. Ultimately, the plasticine data were included as regression 11

models that included the material parameter reasonably accounted for them without 12

dramatically altering any trends. 13

Figure 4.2 presents the data by publication and grouped by studies that investigate 14

the asymmetry on the horizontal axis. The extreme curvature values can be identified 15

www.azom.com
www.ascelibrary.org
www.ila-lead.org
www.wikipedia.com
www.matbase.com
www.matweb.com
www.steel-grades.com
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Fig. 4.1 Digitised curvature results against roll surface speed ratio (left), roll radius
ratio (centre) and friction ratio (right) with colour indicating reduction (top), roll gap
aspect ratio (centre) or the yield stress to Young’s modulus ratio (bottom).
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as the results of Buxton et al. (1972). These experiments were the only non-metal 1

experiments, which explains the unusual behaviour of these data. This figure also 2

reveals some more detailed trends, such as non-linearity in the roll radius ratio and 3

a strong interaction between the surface speed ratio and another parameter, found 4

to be reduction, in Knight et al. (2003). Unfortunately, most of the trends involving 5

interacting parameters only present in individual studies, which may lead to the same 6

contradictions found in the qualitative review. 7

Statistical analyses are performed in the following sections to find trends that unify 8

these individual studies and gain more insight about the overall behaviour of curvature. 9

4.2.3 Linear Regressions Models 10

Linear regression is applied to these data with generally poor results; however, some 11

qualitative insight can be gained from the process. 12

The inherent vertical symmetry is exploited in all the regression models; only taking 13

terms with odd powers of the logged asymmetric ratios and setting the constant to 14

zero ensures the correct anti-symmetric response in these three terms. 15

The simplest possible model that satisfies this condition regresses over the three 16

logged asymmetries. As expected, this model performs very poorly and captures none 17

of the non-linearity. Example trends of this model over each asymmetry are presented 18

in Figure 4.3. The other parameters used are indicative of the values found in the 19

digitised data. The error bars denote the magnitude of the residuals of the model with 20

the digitised data, which show the errors are far greater than the predicted curvature. 21

The adjusted R-squared value, the percent of variation in the data explained by the 22

model adjusted for the complexity of the model, is 0.40, which corroborates the poor 23

performance of this model. This is unsurprising given the known complexity of the 24

problem, such as the outlier dataset, Buxton et al. (1972), depending so significantly 25

on the material parameter. 26

A layer of complexity is added by multiplying each asymmetry by the material 27

parameter, the roll gap aspect ratio and the reduction. This increases the adjusted 28

R-squared value to 0.52 with only twelve degrees of freedom. Figure 4.4 shows similar 29

trends to Figure 4.3, only the friction asymmetry trend is inverted, and some noticeably 30

reduced residuals. 31

Logged non-asymmetric terms, including the log of one minus the reduction, were 32

also tested. Marginally worse results were produced so the unlogged terms continue to 33

be used for the following models. 34
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Fig. 4.2 Digitised curvature results against roll size ratio with fixed surface speed (top
left), friction ratio (top right), roll surface speed ratio (bottom left) and roll size ratio
with fixed rotation rate (bottom right), and grouped by publication.



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

4.2 Numerical Comparison 97

−0.5 0.0 0.5

log
(
Ut
Ub

)

−0.2

−0.1

0.0

0.1

C
u

rv
a
tu

re
,
κ h
0

−0.5 0.0 0.5

log
(
Rt
Rb

) −0.5 0.0 0.5

log
(
µt
µb

)

Fig. 4.3 Curvature predictions by the regression model with linear asymmetric terms
only. The error bars denote the magnitude of residuals of this model. The rolling setup
is defined by (δ, r, σY

E
) = (0.3, 0.2, 0.00056) and asymmetries in roll surface speed

(left), roll size (centre) and friction (right).
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Fig. 4.4 Curvature predictions by the regression model with linear asymmetric terms
multiplied by the material parameter, roll gap aspect ratio and reduction. The error
bars denote the magnitude of residuals of this model. The rolling setup is defined by
(δ, r, σY

E
) = (0.3, 0.2, 0.00056) and asymmetries in roll surface speed (left), roll size

(centre) and friction (right).
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Fig. 4.5 Curvature predictions by the regression model with linear and cubic asymmetric
terms multiplied by the material parameter, roll gap aspect ratio and reduction. The
error bars denote the magnitude of residuals of this model. The rolling setup is defined
by (δ, r, σY

E
) = (0.3, 0.2, 0.00056) and asymmetries in roll surface speed (left), roll size

(centre) and friction (right).

Cubic asymmetric terms were then introduced to account for the strong non-linear1

behaviour observed in the literature review and initial observations. This model,2

illustrated in Figure 4.5, shows non-linearity, noticeably smaller residuals and an3

adjusted R-squared value of 0.68. However, this model fits 49 degrees of freedom so4

is likely to be over fit, fitted to the specific data and not the underlying trend due to5

insufficient data for the models degrees of freedom.6

Other models, using selected subsets of the cubic terms, were also tried but none7

performed noticeably better than the others, indicating that any individual term is not8

capturing the underlying trend significantly more than the others. This supports the9

over fitting hypothesis.10

One final model was produced to capture the maximum variation in the data with11

the fewest number of parameters. This was achieved by incrementally eliminating12

terms from the previous model with the greatest probability of its coefficient being zero.13

After each term was removed, the regression was rerun and another term removed until14

all the terms had probabilities of being zero of less than 0.01%. The resulting model15

had an adjusted R-squared value of 0.65 with fifteen degrees of freedom. The trends16
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Fig. 4.6 Curvature predictions by the regression model with linear and cubic asymmetric
terms multiplied by the material parameter, roll gap aspect ratio and reduction where
the probability of the associated coefficient being zero is less than 0.01%. The error
bars denote the magnitude of residuals of this model. The rolling setup is defined by
(δ, r, σY

E
) = (0.3, 0.2, 0.00056) and asymmetries in roll surface speed (left), roll size

(centre) and friction (right).

and residuals are presented in Figure 4.6 and the final form of the regression is 1
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(4.1) 7

8

While this model is still likely to be over fitted, it is reasonable to assume that the 9

terms that remain indicate trends which may be significant to the problem. 10

This model should not be used for prediction, but does indicate a noteworthy 11

parameter space. This is useful for guiding future investigations and model validation. 12

This equation can be rearranged to provide different insights. Specifically, it can 13

be seen that there is strong interaction between the three geometric variables: reduction, 14
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roll gap aspect ratio and the roll radius ratio.1

For example, (r + δ)
(

log
(

Rt

Rb

)
+ log

(
Ut

Ub

)
log

(
Rt

Rb

)2
+ log

(
Ut

Ub

)2
log

(
Rt

Rb

))
can be fac-2

tored from these terms. It can also be seen that the friction ratio has less interaction3

than the other asymmetries but shows the greatest interaction with the material4

parameter.5

More details of these regression models can be found in Appendix C.6

4.2.4 Lasso Regression Models7

Lasso regression is a modern regression technique that penalises non-zero coefficients8

to discourage over fitting and perform better with fewer data points or more regressors,9

such as the cubic case in the previous section. It can be written in the Lagrangian10

form as11

minβ∈Rp

{ 1
N

(y −X · β)2 + λ |β|
}

(4.2)12

where y is the dependent variable, X is the vector of independent variables, β is the13

vector of coefficients and λ is the selected penalty to the L1 norm of the coefficient14

vector, |β|. Setting the multiplier to zero returns a regular regression result, but15

increasing it will eliminate the next least significant coefficient.16

Lasso regression is commonly used with cross validation, a process of regressing17

over a subset of the data and checking the performance of the resulting model against18

the out of sample data, to find an optimal value of λ. This resulted in high values19

of λ and only three variables included in the regression. The performance of these20

models were also sensitive to the sub-set of data selected, possibly due to the structured21

nature of the data or the small size of the dataset. This might be resolved by manually22

subdividing the data to ensure both subsets are representative of the data as a whole;23

however, this was not undertaken as the poor regressions in the previous chapter24

suggest the models here would be equally poor.25

An alternative use of Lasso regression is to start with a sufficiently high penalty26

to eliminate all variables then reduce the penalty to incrementally introduce new27

variables. The coefficients generated for different values of λ are plotted in Figure 4.728

and Table 4.5 shows the value of λ at which each coefficient becomes non-zero, for λ29

greater than 1 × 10−4. This indicates which terms are most significant to the problem.30

The data for each term was normalised for this process to ensure fair penalisation.31

For example, without normalisation the material property, with small values, would32
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Fig. 4.7 Lasso regression coefficients for decreasing λ.

be excluded because their large coefficient would be penalised far more than other 1

coefficients. 2

These results corroborate some of the observations made at the end of the previous 3

section. Specifically, (r + δ) (R + U2R), σµ and δR are the six terms shared between 4

both analyses. More generally, the complex interaction of the roll radius ratio and all 5

other parameters is borne out in this model, if not more so. Much of this relates the 6

roll radius ratio with both other geometric factors. Contrary to the previous analysis, 7

the material parameter shows more interaction generally; although, less interaction 8

with the friction ratio specifically. 9

4.2.5 Non-Parametric Regression 10

Assorted non-parametric regression techniques were tested; including kernel regression, 11

decision trees and neural networks. These models are particularly susceptible to over 12

fitting given their high degrees of freedom; the current data set is likely too small. 13

Cross validation, fitting the model to a subset of the data and checking the performance 14

against the out-of-sample data, was used to test for over fitting. High variability in the 15

quality of fitting to the out of sample data suggested that these models were sensitive 16
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Table 4.5 Regressors and Penalty Multiplier Value when the Corresponding Coefficient
Becomes Non-zero for Multiplier Values Greater than 1 × 10−4

Regressor λ Regressor λ
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to which data were included in the fitting and, hence, were over fitting. Further, the1

complexity of these models introduced other limitations: it was challenging to enforce2

anti-symmetry or other form into these models.3

The complexity, and such poor fitting, means it is unlikely that meaningful insight4

can be distilled from these models. Given this, non-parametric regression techniques5

were not pursued further. With a large undertaking of simulations to generate more6

data, these could capture the non-linear trends observed but, due to their complexity,7

it is unlikely they could be queried in a way to infer the important dynamics that8

induce curvature.9

4.3 Analytical Models10

Now that a dataset has been collected, more comprehensive assessment of the pre-11

dictive power of the analytical models can be made. Two predictive models have12

been successfully implemented: Dewhurst, I. F. Collins, and W. Johnson (1974) and13

Salimi and Sassani (2002); and several others investigated but found to have errors or14

insufficient detail to complete their implementation. Implementation details and plots15

showing predicted trends and residuals are given for both implemented models.16
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Fig. 4.8 Curvature predictions by the Dewhurst, I. F. Collins, and W. Johnson (1974)
model. The error bars denote the magnitude of error between this model and the
digitised dataset. The rolling setup is defined by (δ, r, σY

E
) = (0.3, 0.2, 0.00056) and

asymmetries in roll surface speed (left), roll size (centre) and friction (right).

Dewhurst, I. F. Collins, and W. Johnson (1974) 1

This model was easily implemented as the expression for the radius of curvature is 2

given in closed form, specifically equation (5) (Dewhurst, I. F. Collins, and W. Johnson, 3

1974). Sticking is assumed between the workpiece and roll so the friction coefficients 4

are unused in the model, limiting its performance on this dataset. 5

Figure 4.8 shows the trends and residuals of this model. The parameters are the 6

same ones used to illustrate the regression models. The trends over the roll speed 7

ratio agree with the various regression models; however, the trends over the roll radius 8

ratio are generally the opposite and no curvature is predicted by asymmetric friction 9

because of the sticking friction model. There is also no indication of non-linear trends, 10

unsurprising given the form of this solution and the limiting range of validity. 11

Y. Hwang and T. Chen (1996) 12

The Y. Hwang and T. Chen (1996) upper-bound model was also investigated. Finding 13

where the inner and outer flow fields intersect is a key step in solving this model as 14

it is where the rigid flow stops and plastic deformation begins. The flow fields are 15

determined by two parameters: a flow rate and two parameters that determine the 16

shape of the flow field inside the roll gap. The contact position, the flow rate, and one of 17

these two shape parameters are used to minimise the deformation power. The value of 18

the second shape parameter is specified only by the statement, ‘[The second parameter] 19

must be restricted to ensure that the rigid-plastic boundary, Γs, is a continuous curve.’ 20



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

104 Curvature Prediction

−0.2 0.0 0.2 0.4

log
(
Ut
Ub

)

−0.4

−0.2

0.0

0.2

0.4

C
u

rv
a
tu

re
κ h
0

−0.2 0.0 0.2 0.4

log
(
Rt
Rb

)

−0.1

0.0

0.1

−0.2 0.0 0.2 0.4

log
(
µt
µb

)

−0.1

0.0

0.1

Fig. 4.9 Curvature predictions by the Salimi and Sassani (2002) model. The error
bars denote the magnitude of error between this model and the digitised dataset. The
rolling setup is defined by (δ, r, σY

E
) = (0.3, 0.2, 0.00056) and asymmetries in roll

surface speed (left), roll size (centre) and friction (right).

It is not clear what condition should be enforced or what value the second parameter1

should take to satisfy this statement. The author was contacted but was unable to2

provide further clarification and several obvious choices, such as zero or unity, were3

trialled for no angle of entry but both showed discontinuous boundaries between the4

flow fields.5

Salimi and Sassani (2002)6

The Salimi and Sassani (2002) model is a comparably simple slab model and shows7

similarities to the asymptotic solution presented in Chapter 2. The method of predicting8

curvature in this model could therefore be applied to the asymptotic models presented9

in this work. Unfortunately, two issues were encountered when implementing the10

model. First, a friction factor coefficient of unity on both roll surfaces leads to a11

division by zero and the resulting curvature tends to infinity in this limit. Second,12

it was found that Figure 11 (Salimi and Sassani, 2002) could only be reproduced by13

including curvature contributions from the mean shear calculation. Contributions from14

the longitudinal strain terms were orders of magnitude larger. Hence, only the mean15

shear contributions are used throughout this document when referring to curvature16

predictions by the Salimi and Sassani (2002) model.17

Figure 4.9 shows this model correctly predicting the trend direction over asymmetric18

roll surface speed with a plateau after some ratio, a consequence of the neutral point19

behaviour. This demonstrates some non-linearity, although not as complex as that20
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observed in the data. There is also no significant change to curvature as a result of the 1

roll radius or friction asymmetries. 2

Qwamizadeh et al. (2011) 3

The form of the shear stress distribution in Qwamizadeh et al. (2011) is assumed 4

to be quadratic in y, τxy = A(x) + yB(x) + y2C(x) where A(x), B(x) and C(x) are 5

determined by three conditions: the top surface being at yield, the bottom surface 6

being at yield and the mean shear determined by the differential equation. That is, 7

equation(28), 8

τxy|y=hu = −τu + (σu − pu)tan (θu) 9

τxy|y=hl
= τl + (σl − pl)tan (θl) 10

and
∫ hu

−hl

τxydy = τh, 11
12

with nomenclature from the paper. Unfortunately, the friction conditions and quoted 13

yield relation for the roll surfaces were fount to result in an inconsistency. These 14

conditions are 15

τu = muk 16

τl = mlk 17

pu = σu + 2
−τutan (θu) +

√
k2 − τ 2

u

1 + tan2 (θu) 18

and pl = σl + 2
τltan (θl) +

√
k2 − τ 2

l

1 + tan2 (θl)
. 19

20

Making these substitutions results in the shear stress exceeding the yield stress for 21

high values of m; for example, taking m = 1 produces τxy = −k(1 + 2sin (θu) cos (θu)) 22

on the top surface. These may be typographical errors or nomenclature confusion, but 23

the model was not included in this study due to this confusion. 24

4.3.1 Comparison to the Markowski et al. (2003) Simulation 25

Results 26

The performance of each of the implemented models, including the final linear regression 27

model, was tested using the results of Markowski et al. (2003). These data were chosen 28
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because they are a particularly interesting set. They illustrate a transition of curvature1

direction over two parameters as well as a transition from linear to non-linear behaviour2

as reduction varies.3

The predictions from each model is presented, with the original simulation data, in4

Figure 4.10. The regression model reasonably predicts the results for small reductions;5

however, the gradient change due to reduction is not captured, let alone the change6

from linear to non-linear behaviour. The Dewhurst, I. F. Collins, and W. Johnson7

(1974) model predicts a gradient more correct for larger reductions and the magnitude8

of the curvature predictions are over ten times too small to quantitatively predict9

the simulated results. Finally, as expected from the previous sections, the Salimi and10

Sassani (2002) model does not predict any curvature from asymmetry in the roll radii.11

Clearly none of these models are able to predict curvature overall.12

4.4 Hybrid Methods13

Given the accuracy of force and torque predictions made in Chapter 2, it would be14

reasonable to include this information in a regression model. Similarly, the curvature15

predictions from the analytical models could plausibly be included, effectively regressing16

over the residuals of those models. This would capture the non-linear behaviour of17

the models in a linear regression. For example, the plateaus caused by the neutral18

point reaching either end of the roll gap could be one of several trends combined in a19

regression model.20

Force and torque are included as total force, force ratio, and torque ratio where the21

ratios are logged for the same reasons as the three asymmetric ratios. The predictions22

are made using either the Salimi and Sassani (2002) model or the leading order solution23

from Chapter 2 whether friction factor or Coulomb friction coefficients were available.24

Beginning with all linear and cubic terms as well as the new force and torque terms,25

a model with an adjusted R-squared value of 0.78 is produced with fifty degrees of26

freedom. While this may seem like a large improvement, only 647 data can be used due27

to the stricter parameters requirements of the analytical predictions. It will therefore28

be more over-fitted than the previous models. Using subsets, such as just the force29

and torque predictions produce very poor models, indicating that the predictive power30

of these parameters is not large. This is unsurprising given their inherently linear31

behaviour with any of the other fitting parameters.32
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4.5 Conclusion1

At present, using currently available analytical methods, curvature cannot be robustly2

predicted, and care must be taken to test a range of geometric regimes and material3

properties before claims are made to that effect.4

After an extensive review of literature investigating sheet curvature from asymmetric5

rolling, contradictions were found between conclusions of individual papers. These6

contradictions were resolved in some instances by considering other parameters, such7

as the dependence of curvature direction on reduction and the roll gap aspect ratio8

under roll surface speed asymmetries. However, in other cases no such resolution was9

found, such as the effects of asymmetric friction.10

Data from fifteen publications were digitised and statistically modelled to try to11

unify these conclusions. A range of methods were considered, including linear regression,12

lasso regression, non-parametric regression, analytic models and hybrid methods. None13

of these were able to quantitatively or qualitatively predict curvature behaviour over14

the three asymmetric and three non-asymmetric parameters considered.15

Despite these short-comings, some insight was gained that could inform future16

investigations or future model validation. For example, strong interaction exists between17

the geometric parameters and the roll radius ratio. It was also established that the18

material properties have a strong effect on curvature, specifically the ratio of yield19

stress to Young’s modulus, which suggests elasticity may play a role in some cases.20

Published analytical models were also investigated. Many were not able to be21

reproduced, due to errors in or incomplete descriptions of their implementations. The22

two that were implemented poorly reproduce the digitised data. Further, there is23

evidence that the mechanisms that produce curvature, proposed by these models, are24

either incorrect or incomplete. Some discussion in the literature suggests that curvature25

is produced by asymmetry in stresses on the roll surfaces at the outlet of the roll gap.26

This hypothesis requires greater investigation and has been considered further in the27

next chapter.28

This work could benefit from a greater and more uniformly distributed data. The29

structure of the digitised experiments make it challenging to establish interactions30

that have not already been considered; however, there is good evidence to suggest31

that many more interactions exist than has been studied. Additionally, the concept32

of hybrid approaches could be explored more thoroughly. Whilst regressing over the33

results of analytical models proved unsuccessful, the inherent form of the analytical34
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solutions, such as the neutral point plateau, could be exploited to motivate a more 1

tailored regression approach. 2
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Chapter 5 1

Thick-sheet Rolling 2

Multiple lobes, or oscillations were observed in the shear stress fields of the simulated 3

results for both asymmetric and clad sheet rolling. These results, from Chapter 2 and 4

Chapter 3, are reproduced in Figure 5.1 for reference. It is worth noting that these 5

oscillations are not numerical artifacts of the simulations; they are reobust to changes 6

in the mesh and numerical solver. Their physical nature is also verified in this chapter 7

with an analytical model that produces similar behaviour. 8

This motivated consideration of alternative asymptotic assumptions, which are 9

presented with a leading order solution of the resulting model in Section 5.2. Preliminary 10

results, presented in Section 5.3, show mixed agreement with simulations: agreement 11

was found with most of the stress and strain fields but force and torque predictions 12

disagree by a factor. Some indication of non-linear curvature trends was also found. 13

This model remains incomplete; specifically, the next order solution and determining 14

systematic inlet boundary conditions. Discussion of these next steps is given with some 15

concluding remarks in Section 5.4. 16

5.1 Introduction 17

The shear stress oscillations are found to be stable features and remain stationary 18

to the rolls once steady state is reached. This phenomenon could be a feature of 19

the numerical method, the modelling assumptions or part of the physical processes. 20

Further simulation results are presented here to provide evidence that it is the latter 21

of these possibilities. 22

Already, this has been observed for both explicit and implicit solvers, and dynamic 23

and static stepping. Figure 5.2 shows the phenomenon exists with the following 24
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Fig. 5.1 Shear stress fields from Chapter 2 and Chapter 3.

configurations: a work hardening material, described in Chapter 2; an implicit solver1

and the finest mesh included in the mesh convergence study, refer Appendix D.2;2

an irregular mesh; and, a three dimensional workpiece, with and without enforced3

symmetry. The three dimensional cases eliminate plane strain as the cause, the range4

of solvers and meshes suggest it is not a numerical artefact and enforced symmetry5

indicates it is not vertical oscillations. Although not exhaustive, these observations6

indicate that it is highly likely to be a physical feature.7

Further, a phenomenon in the equivalent strain rate plots, Figure 8, of Yoshii et al.8

(1991), shows similar patterns, although this was not discussed in that paper. This9

may have also been observed in Figure 8 of Richelsen (1997), a plot of the horizontal10

stress field.11

To investigate further, simulations were completed, varying each parameter, from12

which Figure 5.3 shows that the number of lobes is inversly proportional to the roll13

gap aspect ratio. The δ = 0.05 case suggests that sufficiently many lobes begin to blur14

so no oscillations would be observable in the δ → 0 limit, which is consistent with the15

thin sheet asymptotic models presented in Chapters 2 and 3. For δ = 1.0, the shear16

stress distribution also exhibits a single sign change. This also looks like the thin sheet17

asymptotic model, which might explain why this phenomenon has not been previously18

identified in literature.19

A slip-line field of a stamp shows 45o lines from the corners of the stamp. If there20

were a second stamp, squeezing the material from below, these angular lines would21

reflect off the bottom stamp and propogate through the gap, producing lobe patterning22

like that seen here. Such a pattern should, therefore, be captured by the material and23
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Fig. 5.2 Shear stress fields for a work hardening material, using an implicit finite
element solution, using an irregular mesh, for a three dimensional workpiece, and for
the top half of a three dimensional workpiece with a horizontal plane of symmetry. All
cases are symmetric configurations with assorted parameters.
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Fig. 5.3 Shear stress fields for varying δ from the finite element simulations (left) and
the thin-sheet rolling model from Chapter 2(right). The other parameters used are (ĥ0,
r, µ, k̂) = (0.05m, 0.2, 0.1, 173MPa).

friction models used in Chapter 2 if the asymptotic model resolved through thickness1

variation.2

5.2 Alternative Asymptotic Assumptions3

An asymptotic model is developed in this section that assumes a small reduciton and4

small friction coefficients, but not a small roll gap aspect ratio. Similar scalings as5

Chapters 2 and 3 are used,6

x̂ = l̂x ĥ = ĥ0h ŷ = ĥ0y
∂ĥ

∂x̂
= εδ

∂h

∂x
7

ŝxx = k̂sxx ŝxy = εk̂sxy p̂ = k̂p λ̂ = λε
û0

k̂l̂
8

û = û0u v̂ = εû0v9

γt =


µt

µb
: x < xnt

− µt

µb
: x > xnt

γb =
 −1 : x < xnb

1 : x > xnb

, (5.1)10

11

where the nomenclature is the same as Chapter 2 with ε taken to be the small parameter,12

say ε = µb. This does not change the scaling of the stress or velocity terms; only the13

flow rate parameter. This produces the non-dimensional plane strain, rigid perfectly14
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plastic governing equations 1

−δ ∂p
∂x

+ δ
∂sxx

∂x
+ ε

∂sxy

∂y
= 0, (5.2) 2

−∂p

∂y
− ∂sxx

∂y
+ δε

∂sxy

∂x
= 0, (5.3) 3

4

5

∂u

∂x
= ελsxx, (5.4) 6

∂u

∂y
+ δε

∂v

∂x
= 2δε2λsxy, (5.5) 7

8

9

δ
∂u

∂x
+ ε

∂v

∂y
= 0 (5.6) 10

11

12

and s2
xx + ε2s2

xy = 1. (5.7) 13
14

with boundary conditions 15

0 = p(x, ht/b(x))
−δ

∂ht/b

∂x
+

δ
∂ht/b

∂x
+ γt/b(x)

1 − ε2δγt/b(x)∂ht/b

∂x

 16

+ sxx(x, ht/b(x))
δ∂ht/b

∂x
+

δ
∂ht/b

∂x
+ γt/b(x)

1 − ε2δγt/b(x)∂ht/b

∂x

 17

+ sxy(x, ht/b(x))
−1 + ε2δ

∂ht/b

∂x

δ
∂ht/b

∂x
+ γt/b(x)

1 − ε2δγt/b(x)∂ht/b

∂x

 (5.8) 18

and 0 = v(x, ht/b(x)) − δ
∂ht/b

∂x
u(x, ht/b(x)). (5.9) 19

20

Given ε ≪ 1, each variable is expanded in terms of ε and each order of ε is 21

considered independent. At leading order, equation (5.7) gives 22

s(0)
xx = ±1 (5.10) 23

where the positive sign is chosen for the same reasons given in Chapter 2. Using this 24

solution in equations (5.2) and (5.3) shows that the leading order pressure is constant 25
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horizontally and vertically, hence1

p(0) = p0. (5.11)2

Equation (5.5) and equation (5.6) or equation (5.4) then determine the horizontal3

velocity as constant,4

u(0) = u0. (5.12)5

Considering the next order of ε, equation (5.7) gives6

s(1)
xx = 0 (5.13)7

and equations (5.2) and (5.3) give8

∂p(1)

∂x
− 1
δ

∂s(0)
xy

∂y
= 0 (5.14a)9

and ∂p(1)

∂y
− δ

∂s(0)
xy

∂x
= 0. (5.14b)10

11

This wave equation set is closed with the stress boundary conditions,12

s(0)
xx

(
2δ∂h
∂x

+ γt

)
+ γp(0) − s(0)

xy = 0 on y = ht(x) (5.15a)13

and s(0)
xx

(
2δ∂h
∂x

+ γb

)
+ γp(0) − s(0)

xy = 0 on y = hb(x). (5.15b)14

15

Similarly, equation (5.5) and equation (5.6) give16

∂u(1)

∂x
+ 1
δ

∂v(0)

∂y
= 0 (5.16a)17

and ∂u(1)

∂y
+ δ

∂v(0)

∂x
= 0, (5.16b)18

19

which is the second wave equation set, closed by20

∂ht

∂x
u(0)(x, ht(x)) − v(0)(x, ht(x)) = 0 (5.17a)21

and ∂hb

∂x
u(0)(x, hb(x)) − v(0)(x, hb(x)) = 0. (5.17b)22

23
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Given two sets of wave equations, consider the general case, 1

dα

dx
+ b

dβ

dy
= 0 (5.18a) 2

and dα

dy
+ d

dβ

dx
= 0, (5.18b) 3

4

which can be simplified by taking 5

α(x, y) = ∂ϕ

∂x
(5.19a) 6

and β(x, y) = −1
d

∂ϕ

∂y
(5.19b) 7

8

to reveal the wave equation, 9

1
c2
∂2ϕ

∂x2 = ∂2ϕ

∂y2 (5.20) 10

where c2 = b
d
. This has the solution of travelling waves, which form characteristics or 11

slip-lines in this application, 12

ϕ = c1(y + cx) + c2(y − cx). (5.21) 13

Boundary conditions are required on the roll surfaces and one of the two ends. 14

Assuming that α and β are known on the inlet boundary, α0(y) and β0(y), and some 15

condition is known that connects them along the roll surfaces, 16

a0(x) + a1(x)α(x, ht/b(x)) + a2(x)β(x, ht/b(x)) = 0, (5.22) 17

conditions on c′
1 and c′

2 can be determined for the inlet boundary, 18

c′
1(y) = −1

2

(
α0(y)
c

− dβ0(y)
)

(5.23a) 19

and c′
2(y) = −1

2

(
α0(y)
c

+ dβ0(y)
)

(5.23b) 20

21

valid for y ∈ [hb(0), ht(0)], and, for the roll surfaces, 22

b0(x) + b1(x)c′
1(ht/b(x) + cx) + b2(x)c′

2(ht/b(x) − cx) = 0 (5.24) 23
24
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valid for x ∈ [0, l] and where b0 = a0, b1 = ca1 − a2
d

and b2 = −ca1 − a2
d

. Although it1

would not be easy to write out a closed form solution from these boundary conditions, it2

is relatively straight forward to compute an analytic solution by following the slip-lines3

until an end condition can be applied. It is also convenient that4

α(x, y) = ∂ϕ

∂x
= c (c′

1(y + cx) − c′
2(y − cx)) (5.25a)5

and β(x, y) = −1
d

∂ϕ

∂y
= −1

d
(c′

1(y + cx) + c′
2(y − cx)) (5.25b)6

7

so ϕ = c1 + c2 never has to be integrated for.8

5.3 Results9

The development of this model remains incomplete. Correction terms should be10

considered for each variable to ensure all the relevant dynamics have been captured.11

Like the thin sheet model, this would include stress terms only influencing the strain12

at the next order. Also, the pressure, shear stress and velocity must be defined along13

the inlet boundary, as opposed to defining constant pressure and horizontal velocity14

only. For the purpose of producing preliminary results, these inlets are estimated to be15

either constant or linear with magnitudes matching the roll boundary conditions, but16

ultimately should be determined from an outer elastic problem.17

Locating the neutral point is also required and the binary search used for the thin18

sheet model is used here to ensure the correct average outlet pressure.19

The preliminary results presented in this section are mostly for the same situations as20

those presented for the thin sheet asymmetric rolling model in Chapter 2; specifically,21

stress and strain fields, and force and torque predictions. Proxies for curvature22

prediction are also presented for both the thin and thick-sheet asymptotic models and23

are compared to data from Markowski et al. (2003).24

5.3.1 Stress and Strain Fields25

Comparing the shear stress fields to the numerical results at the beginning of this26

chapter, Figure 5.4, shows that this model is able to capture the observed lobes. Both27

the magnitude and number of oscillations seem to be captured correctly. One notable28

discrepancy is the δ = 1.0 case, where the sign of the top shear lobe is incorrect. This is29



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

5.3 Results 119

0.0 10.0 20.0 30.0 40.0 50.0

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

δ = 1.0

0.0 20.0 40.0 60.0 80.0 100.0

δ = 0.5

0.0 50.0 100.0 150.0 200.0 250.0

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

δ = 0.2

100.0 200.0 300.0 400.0 500.0

x (mm)

δ = 0.1

0.0 200.0 400.0 600.0 800.0 1000.0

x (mm)

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

δ = 0.05

-120.0 -60.0 0.0 60.0 120.0

Shear Stress (MPa)

0.0 10.0 20.0 30.0 40.0 50.0

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

δ = 1.0

20.0 40.0 60.0 80.0 100.0

δ = 0.5

0.0 50.0 100.0 150.0 200.0 250.0

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

δ = 0.2

100.0 200.0 300.0 400.0 500.0

x (mm)

δ = 0.1

0.0 200.0 400.0 600.0 800.0 1000.0

x (mm)

-40.0

-20.0

0.0

20.0

40.0

y
(m

m
)

δ = 0.05

-120.0 -90.0 -60.0 -30.0 0.0 30.0

Shear Stress (MPa)

Fig. 5.4 Shear stress fields for varying δ from the finite element simulations (left) and
the thick-sheet rolling model (right), both exhibiting shear lobes. The other parameters
used are (ĥ0, r, µ, k̂) = (0.05m, 0.2, 0.1, 173MPa).

the consequence of incorrect neutral points and indicates greater nuance in the binary 1

search is required. 2

The shear and stress fields for the ‘Combo 2’ parameter set used in Chapter 2 are 3

presented in Figure 5.5 with the numerical results from that chapter. The pressure 4

is noisy, unlike the thin sheet model; however, the corrected term generally exhibits 5

a pressure hill. The horizontal deviatoric stress remains homogeneous and the shear 6

stress shows the characteristic shear lobes, as expected from the previous results. The 7

horizontal velocity matches well in form and magnitude; however, no oscillations are 8

present in the vertical velocity. This is likely a consequence of the inlet velocity profile 9

used for the model as the form of the equations for this term match the shear stress 10

equations, hence can support the characteristic lobes also. 11

5.3.2 Force and Torque Predictions 12

Using the thick-sheet model, force and torque predictions are made to compare to the 13

simulations from Chapter 2 over the three asymmetries of this model, Figure 5.6. The 14

correct trends are captured by this model; however, there is a clear discrepancy in 15

magnitude. This could be a consequence of the inlet boundary conditions or that this 16

model is inaccurate for δ = 0.1 and r = 0.25 because the assumptions made require 17
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Fig. 5.5 From the top to bottom, pressure, horizontal deviatoric stress, shear stress,
horizontal velocity and vertical velocity fields for the for the ‘Combo 2’ parameter
set, (µb, δ, r, µt/µb, R̂t/R̂b, Ût/Ûb) = (0.1, 0.1, 0.25, 0.9, 1.1, 0.95), from the leading or-
der asymptotic model (left), corrected asymptotic model (centre) and finite element
simulations (right).
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Fig. 5.6 Roll force (top) and torque (bottom) as the top roll is varied to achieve the
asymmetric ratio of friction (left), speed (middle) or size (right). The other parameters
used are (ĥ0, R̂b, r, µ, k̂) = (0.01m,2.5m, 0.12, 0.1, 173MPa).

r ≪ δ. The latter would not be surprising given the assumptions of this model. A 1

comparison to thicker sheet simulations would be necessary to ascertain this more 2

certainly. 3

5.3.3 Curvature Predictions 4

A final comparison is made, regarding curvature prediction. While further work is 5

required to predict curvature directly, the mean shear stress was proposed as one of 6

two mechanisms for generating curvature in Salimi and Sassani (2002). The validation 7

of the mechanism was discussed in Chapter 4. Despite these reservations, mean shear 8

strain rate is used here as a proxy for curvature to give some indication of the behaviour 9

of this model. 10

Figure 5.7 shows the curvature results of Markowski et al. (2003) and the mean 11

shear strain rate of the thin sheet rolling model and thick-sheet rolling model as the 12

roll size ratio and reduction are varied. These curvature results are used because they 13

are a clear example of the complex non-linear behaviour. This is not captured at 14
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all by the linear trends of the thin sheet rolling model; where as, some non-linear1

trends are observed from the thick-sheet rolling model. While these predictions are still2

quantitatively and qualitatively poor, this does show additional non-linear phenomena3

captured by the new model.4

5.4 Concluding Remarks5

An asymptotic model of thick sheet rolling is achieved by alternative scaling assumptions6

to the thin sheet model presented in Chapter 2. Specifically, the small roll gap aspect7

ratio assumption is relaxed to a small reduction assumption. This model produces8

two sets of wave equations that can be solved for the first non-constant term in each9

variable’s asymptotic expansion.10

While further work is required to determine inlet boundary conditions, and higher11

order terms may be necessary to capture all necessary phenomena, a minimal implemen-12

tation was completed to produce some initial results. These show that the numerical13

stress and strain fields are qualitatively predicted, particularly the characteristic shear14

lobes. Force and torque predictions capture the correct trends over each of the three15

asymmetries; however, a large discrepancy in magnitude exists. Finally, early indica-16

tions for curvature prediction show the possibility of non-linear trends, unattainable17

with the thin sheet rolling model, being captured. Further work is required to make18

direct curvature predictions from this model.19

Further work is also required to determine the correct inlet profile for the pressure,20

shear stress and velocity. This could be achieved by matching to an elastic, mixed21

boundary problem around where the workpiece first contacts the roll. Such a problem22

has been considered by Dr. Chris Cawthorn who found an analytical solution using23

the Weiner-Hopf method. Additional work to solve for the next order corrections could24

also improve accuracy and provide direct curvature predictions.25
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model (bottom) as the roll radius ratio and reduction (colour) are varied.
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Chapter 6 1

Ring Rolling 2

Existing models of ring rolling seem generally inadequate due to strict assumptions 3

regarding the circularity, how close to a circle the workpiece remains; centrality, how 4

centred the workpiece is to the work roll and mandrel; and coaxiality, how uniform 5

the workpiece thickness is. Prescribing these properties considerably limits how useful 6

a model would be as these are measures to be controlled and each would indicates a 7

failure mode of the process. An approach for modelling ring rolling is presented in this 8

chapter that does not assume any of these three parameters. Plastic deformation only 9

occurs within the roll gap, which allows the outer region to be modelled with a curved 10

beam model. This is presented in Section 6.2. The region between the rolls is modelled 11

using a slab method that is extended to allow the neutral points to be horizontally 12

misaligned, which allows the roll gap to support greater bending moments. While each 13

of these models behaves as expected, nuances in the coupling between them means 14

a complete solution has not yet been found and this work is therefore not complete. 15

The proposed coupling and discussion of these challenges are presented in Section 6.4. 16

The chapter concludes with some discussion about how to find a convergent coupling 17

solver as well as ideas about how to extend this model, specifically dynamic effects are 18

proposed for the present model in Section 6.5.1 and a model for the English wheel is 19

proposed in Section 6.5.2. 20

6.1 Introduction 21

Ring rolling is the process of forming a cylindrical product by repeatedly passing an 22

annular workpiece through sets of rolls. The continuous rolling results in products 23

that are joinless and have undergone considerable work hardening. The workpiece is 24
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Fig. 6.1 A diagram of the ring rolling process.

typically passed through a set of horizontal and a set of vertical rolls. The majority of1

deformaiton occurs between the work roll and mandrel, marked in Figure 6.1; axial2

rolls, also marked in the figure, can cause further deformation, although, this typically3

is to prevent vertical growth of the workpiece only. Guide rolls on the outer surface of4

the workpiece are also common to ensure the workpiece remains centered to the work5

roll and mandrel.6

The deformation between the work roll and mandrel is similar to asymmetric7

rolling. The process is driven by the same physics and can be described with the same8

mathematical models: the thickness of a workpiece is reduced by passing it through9

rolls of asymmetric size and rotation, which results in curvature changes that define10

the shape of the product. Ring rolling differs from asymmetric sheet rolling in most11

other ways. Obviously, the formed and unformed ends of the workpiece are joined12

by a ring that couples the geometry and forcing. Most of the parameters also take13

very different values to most asymmetrical sheet rolling configurations. The roll gap14

aspect ratio is typically thick, not thin; the inlet and outlet curvature is significant, not15

negligble; and the reduction is small, not order one. The workpiece is also deformed16

repeatedly, making work hardening significant. Finally, the width of the workpiece is17

of similar order to the thickness; height growth, the equivalent of lateral spread, is18

even a designed result of the process.19

Many models of ring rolling have been proposed. A class of these are limited20

to the roll gap and are very similar to asymmetric rolling models, including slab21

models (Lin et al., 1997; Parvizi, Abrinia, and Salimi, 2011; Zamani, 2014), upper22

bound modelss (Parvizi and Abrinia, 2014), and slip-line models (Hawkyard et al.,23

1973). Other models consider the kinematics of the ring to predict ring growth. Guo24
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et al. (2011) assumes linear variation of the profile ratio to develop a stable forming 1

regime with constant radial growth. Xu et al. (2012) considers the ring as a curved 2

hexahedron by assuming constant reduction of the profile dimensions. Combined with 3

estimates of slip within the roll gap, this improves the radial expansion prediction. 4

This line of thinking is progressed further in Berti et al. (2015), in which the ring is 5

divided into a finite number of sections and the geometric properties of each section is 6

determined. The geometric properties change twice per revolution: once from radial 7

roll deformation and once from axial roll deformation. Quagliato et al. (2016) extends 8

this model to predict the plastic strain tensor and consider hardening effects. 9

The objetive of most research into ring roling has been to improve process control or 10

facilitiate process planning. For example, Lin et al. (1997); H. Yang et al. (2005); and 11

Yan et al. (2007) each propose conditions on the reduction for feasibile rolling above 12

which the rolls cannot draw the ring into the roll gap. These relate friction coefficients, 13

ring profile geometry, feed rate and rotation rate to propose operational limits. Berti 14

et al. (2015) effectively provides a review of these findings by systematically applying 15

analytical models and empirical rules to determine the constraints of each control 16

variable. An alternative approach is presented in Hua et al. (2016), in which a beam 17

model is used to determine the maximum force the guide rolls can apply before causing 18

the workpiece to buckle. 19

More recently, increased sensing coverage with image processing has been used 20

to achieve effective control without a tailored predictive model (Arthington et al., 21

2016). Rings with non-uniform curvature, including square and pentagonal rings, were 22

produced with this approach. Perhaps one motivation for exploring better sensing 23

was the limitations of existing analytical models; most assume circular and centered 24

workpieces, which is only reasonable with sufficient guide rolls. Arthington et al. (2016) 25

clearly demonstrates the benefits and flexibility of being able to operate ring rolling 26

without these assumptions. 27

In light of this, the work presented here establishes a modelling framework of the 28

ring rolling process that can accommodate non-circular, non-centred and non-coaxial 29

workpieces. Ultimately, convergence was not achieved with the presented framework; 30

however, the modelling approach described here would be of great value if the correct 31

coupling is found. 32

The process is modelled as two regions, an outer elastic ring and an inner region 33

between the rolls. The outer problem is treated as a Timoshenko curved beam (Timo- 34

shenko et al., 1925), based on Castigliano’s theory. The entire outer ring is assumed 35
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to be below yield, but no other assumptions are made here beyond the beam model1

construction. The cross-section is taken as rectangular, but could be generalised. The2

inner problem is modelled as a slab model. This requires plane strain to be assumed,3

which is assumed in much of the published analytical work on ring rolling. This4

assumption has been verified using FE analysis for some configurations Berti et al.5

(2015) and, while height growth is significant in other configurations, it can be limited6

with axial rolls. Small reductions per pass make it reasonable to neglect inertia within7

the roll gap. Finally, the curvature and angled entry of the workpiece is significant8

so this model will be extended to incorporate horizontally misaligned contact points.9

These models are coupled through force and displacement boundary conditions.10

Finally, a means of including dynamics in the outer problem is proposed in the11

discussion of future work of this chapter.12

6.2 Curved Beam Models13

The outer model of an elastic curved beam is a generalisation of Castigliano’s Theory14

presented in Timoshenko et al. (1925). This model can accomodate a beam of arbitrary15

cross-section and of arbitrary path. It is based on Castigliano’s second theorem which16

states that the partial derivative of the strain energy with respect to generalised forces17

gives the generalised displacements in the direction of that force.18

An expression for the strain energy of the workpiece (Timoshenko et al., 1925) is19

given by20

U =
∫

Γ

(
M2

2RAγE + S2

2AE − MS

AER
+ kQ2

2AG

)
ds, (6.1)21

where S, Q and M are the longitudinal force, shear force and moment respectively;22

and R, A, E, G, k, γ are the radius of curvature, the cross sectional area, the elastic23

modulus, the shear modulus, a numerical factor and the distance between the neutral24

axis and centre of gravity respectively. All of these variables are defined locally so are25

functions of the distance along the beam, s. The terms of the integrand correspond26

to bending, stretching, coupled bending-stretching and shear energies respectively.27

According to Castiglian’s second theorem, this gives28

δx = ∂U

∂f
=
∫

γ

(
∂M

∂f

(
M

RAγE
− S

AER

)
+ ∂S

∂f

(
S

AE
− M

AER

)
+ kQ

AG

∂Q

∂f

)
ds (6.2)29

where δx and f are the generalised displacement and generalised force respectively.30
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Each of these forces can be defined in terms of a horizontal force, a vertical force 1

and a bending moment at the position along the beam, 2

S = Fvsin (ϕ) − Fhcos (ϕ) , (6.3) 3

Q = Fhsin (ϕ) − Fvcos (ϕ) (6.4) 4

and M = M0 + Fv∆h+ Fh∆v. (6.5) 5
6

where Fh, Fv and M0 are the horizontal force, vertical force and moment acting on the 7

end of the beam; ∆h and ∆v are the horizontal and vertical distance to the end of the 8

beam; and ϕ is the local angle to the horizontal. 9

The partial derivatives and dispalcements are then calculated as 10

δx = ∂U

∂Fh

=
∫

γ

(
∆v

(
M

RAγE
− S

AER

)
− cos (ϕ)

(
S

AE
− M

AER

)
+ sin (ϕ) kQ

AG

)
ds,

(6.6)

11

δy = ∂U

∂Fv

=
∫

γ

(
∆h

(
M

RAγE
− S

AER

)
+ sin (ϕ)

(
S

AE
− M

AER

)
− cos (ϕ) kQ

AG

)
ds

(6.7)

12

and δθ = ∂U

∂M0
=
∫

γ

(
M

RAγE
− S

AER

)
ds. (6.8) 13

14

Each of the variables must be determined locally with the following considerations: 15

• The radius of curvature, R = 1
κ
, and thickness, w are assumed to be known 16

functions determined from initial conditions and the rolling process. They can 17

vary along the length of the beam. 18

• The workpiece is assumed to remain rectangular, giving the cross sectional area 19

as A = wh. 20

• E and G are both considered to be constant but could also be updated from the 21

rolling process. 22

• The distance between the center of gravity of the cross section and the neutral 23

axis, γ, can be calculated using equations (216) and (217) of Timoshenko et al. 24

(1925) (page 224). This assumes the width can be expressed as a function of the 25
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distance from the centre of gravity,1

γ = Rm

1 +m
where m =

∫
(w(y) ∗ Σ∞

i=0(y/R)i) dy
RA

2

• k is a numerical factor to account for the variation in shear through the bar. It3

is taken to be 1.5 for rectangular bars and more discussion is provided in Section4

17 of Timoshenko et al. (1925) (page 63)5

The ring is discritised and linear variation of each of the varaibles is assumed between6

nodes. This is limiting with a coarse discretisation but dynamic remeshing would be7

straightforward to implement.8

What remains are three path integrals to be evaluated. For computational ease, the9

path is determined from the undeformed state; an ODE evaluation using the prescribed10

curvature profile is sufficient. This requires the length of the beam to be known or a11

robust termination condition, which is determined by the model coupling.12

Example results of this model are presented in Figure 6.2. Three different forces13

are illustrated and each shows an intuitively correct behaviour.14

6.3 Extended Slab Model15

The asymptotic rolling model developed in Chapter 2 has two short comings that limit16

its application in ring rolling: it assumes that the roll gap aspect ratio is small and17

that the contact points are vertically aligned. The latter limits bending moments18

supported by the roll gap and curved workpieces, which are significant in the present19

application. The leading order asymptotic solution, consistent with published slab20

models, emperically produces good force and torque predictions when the reduction is21

small, irrespective of the workpiece thickness. A slab model will be extended to resolve22

regions where the workpiece is in contact with only one roll and, hence, overcome both23

these limitations.24

Like any asymmetric slab model, the premise is to consider a force and torque25

balance on each vertical element of the roll gap. By writing these balances in terms of26

stresses and assuming linear variation in horizontal stress through thickness, a system27
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Fig. 6.2 The deflection of an example curved beam under the indicated end forces to
illustrate the Timoshenko et al. (1925) curved beam model.
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of ODEs in three variables can be attained,1

dσb

dx
=
((

−2h2
t + hthb + h2

b

) 1
3∆h

(
fh

t + fh
b

σt + σb

2
d∆h
dx

)
2

+ 1
6

(
2ht

dht

dx
(2σt + σb) −

(
dht

dx
hb + ht

dhb

dx

)
(σt − σb) − 2hb

dhb

dx
(σt + 2σb)

)
3

+f
v
t + f v

b

2 − fh
t

(
ht + dht

dx

1
2

)
− fh

b

(
hb + dhb

dx

1
2

))
6

∆h2 , (6.9)4

dσt

dx
= −

fh
t + fh

b + σt+σb

2

(
d∆h
dx

)2

∆h − dσb

dx
(6.10)5

and dτ̄

dx
= −

τ̄ d∆h
dx

+ f v
t + f v

b

∆h (6.11)6
7

where ht, hb and ∆h are the top roll surface, bottom roll surface and roll separation; σt,8

σb and τ̂ are the horizontal stress on the top and bottom surfaces and the shear averaged9

over the vertical element; and, fh
t , f v

t , fh
b and f v

b are the horizontal and vertical traction10

forces acting on the top and bottom of each material element respectively. The traction11

forces can be defined as12

f v
t =

σ′
t + τ ′

t
dht

dx√
1 +

(
dht

dx

)2
,13

fh
t =

−σ′
t

dht

dx
+ τ ′

t√
1 +

(
dht

dx

)2
,14

f v
b =

−σ′
b − τ ′

b
dhb

dx√
1 +

(
dht

dx

)2
15

and fh
b =

σ′
b

dhb

dx
− τ ′

b√
1 +

(
dht

dx

)2
(6.12a)16

17

where σ′ is the normal stress and τ ′ is the tangential stress on the material surface.18

Rotating the stress tensor, the surface stresses can be written as19

σ′ = σxsin2 (θ) + σycos2 (θ) + 2τsin (θ) cos (θ) (6.13a)20

and τ ′ = (σx − σy) sin (θ) cos (θ) + τ
(
cos2 (θ) − sin2 (θ)

)
; (6.13b)21

22
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and taking the yield condition, 1

(
σx − σy

2

)2
+ τ 2 = k2, (6.14) 2

the following equation can be derived, 3

τ ′2 + 2τ ′cos2 (θ)
tan (θ)

(
τ ′ − σx − σ′

tan(2θ)

)
4 (2sin2 (θ) + 1) 4

+ sin2 (θ)
(
2cos2 (θ) − sin2 (θ)

)tan (θ)
(
τ ′ − σx − σ′

tan(2θ)

)
4 (2sin2 (θ) + 1)

2

5

+ k2
(
2cos2 (θ) − 1

)2
= 0. (6.15) 6

7

This equation is then closed with a friction law that determines τ ′. 8

The extension, to allow the contact point to be mis-aligned, arises by assuming the 9

free surface of the workpiece opposite the surface in contact with the roll are circular 10

and that the surface remaining in contact stay above yield. A friction condition on 11

each surface can express this as a four part piece-wise function, 12

τ ′ =



0 if x < xin

−µσ′ if xin < x < xn

µσ′ if xn < x < xout

0 if xout < x

(6.16) 13

14

where µ is the friction coefficient; and xin, xn, and xout are the inlet contact point, 15

neutral point and outlet contact point respectively. The opposite sign is taken for the 16

bottom surface. 17

So once four contact points, two neutral points, and one set of force end conditions 18

have been determined this model can be quickly evaluated as a system of three ODEs 19

Figure 6.3 illustrates an example solution, which shows significant increases in vertical 20

forces, moments and shear stress where only one side is in contact and typical behaviour 21

where both sides are in contact. 22

The contact and neutral points must be determined from other geometric and force 23

conditions. For example, one of the two neutral points is typically determined by the 24

roll speed ratio, like the asymptotic model; and an angle of entry and curvature of 25

the free surface determines one of the contact points from the other. The choice of 26
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these conditions will be application dependent so are discussed later, in the context of 1

coupling with the outer beam model. 2

If perfect-plasticity is assumed then both outlet contact points will be at the 3

minimum separation between the rolls. This is the assumption used in Aboutorabi 4

et al. (2016), which presents a model similar to that presented here. They consider rolls 5

that are not vertically aligned, which is rotationally equivalent to the configuration 6

considered here, less the inlet curvature. The key difference is that the Aboutorabi et al. 7

(2016) model uses only the horizontal force balance, where this model uses moment 8

and vertical force balances as well. 9

Curvature prediction with this model will be the formulation presented by Salimi 10

and Sassani (2002). Aboutorabi et al. (2016) also uses this method, which makes 11

the Aboutorabi et al. (2016) model an alternative for the framework presented here. 12

Numerically comparison of these models would be necessary to determine which is the 13

better choice. 14

6.4 Coupling 15

The outer, curved beam model and the inner, extended slab model are coupled by both 16

force and geometry. This coupling must provide the sufficient conditions to determine 17

the three inlet forces, four contact points, and two neutral points of the extended slab 18

model. 19

A force balance of the outer ring requires the entry and exit forces to be equal. 20

Assuming a linear horizontal stress profile, the forces of the inner and outer models are 21

matched for three conditions, 22

S = ∆h(l̂)σt(l̂) + σb(l̂)
2 = ∆h(0)σt(0) + σb(0)

2 , (6.17) 23

Q = ∆h(l̂)τ̄(l̂) = ∆h(0)τ̄(0) (6.18) 24

and M = ∆h(l̂)σt(l̂) − σb(l̂)
2 = ∆h(0)σt(0) − σb(0)

2 (6.19) 25
26

Geometric compatibility requires matching the curvatures at both ends; the dif- 27

ference in the entry and exit angles; and the distance between the entry and exit. 28

The ends of the outer beam model are taken to be on the centreline and horizontally 29

mid-way between the two contact points. This is illustrated in Figure 6.4, where points 30

A, C, D, and F are the contact points and points B and E are the ends of the beam 31
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Fig. 6.4 A diagram of the geometry of the roll gap for the ring rolling processes. This
illustrates the geometric compatibility of the inner and outer models.

model. The curvature is also taken to be the centre-line curvature of the workpiece,1

the dotted lines from point B and E, and the free surfaces are assumed to remain2

circular within the inner model. The outer model, for a known set of forces, solves3

for the displacement between the ends, the angle difference between the ends and the4

curvature at each end. These geometric conditions provide three additional conditions5

to, say, solve for three of the contact points given the position of one.6

Finally, the workpiece speed at the neutral points must match the roll surface speed7

ratio, determining one of the two neutral points.8

This leaves two unconstrained variables. A number of approximations are plausible9

but it is unclear which is the best option. They include10

1. Assuming perfect rigid plasticity would fix D and F to the minimum separation11

between the rolls, like the solution presented by Aboutorabi et al. (2016). However,12

the draw back is that with vertically aligned outlet conditions, no substantial13

bending moment or vertical force can be supported, which limits the ability to14

couple with the outer problem. It is also likely to be less realistic given the curved15

workpieces.16
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2. An estimate of the elastic recovery can be used to estimate the outlet thickness. 1

Fixing one of the two outlet contact points allows the other to be determined with 2

this condition. One such approximation, assuming vertical elastic compression 3

only, could be h1(1 + Eσy(x = 0)) = hseparation where h1 is the outlet thickness, 4

hseparation is the roll gauge, E is Young’s modulus and σy(x = 0) is the vertical 5

stress at the point of minimum speration solved as part of the slab model. This 6

method seems like a reasonable compromise as it is able to support greater 7

bending moments and vertical forces than the previous case. However, it has 8

been observed in simulations that neither contact point is at the point of minimum 9

separation so this may still be insufficient to capture the correct geometry. 10

3. Ideally, the position of both the outlet contact points would be determined by 11

the model. The elastic recovery suggested previously would be one constraint; 12

however, this leaves the system underconstrained by one constrain and no appro- 13

priate condition has been found to resolve this. It is possible that the thick sheet 14

model presented in Chapter 5 could be matched to a transition solution that can 15

then be formally matched to the outer ring model. 16

Further to the ambiguity of the final conditoins to couple these models, the sensitivity 17

of each model makes them unsolvable using black box numerical solvers. Small 18

displacement changes produce large force changes in the inner problem and relatively 19

small force changes produce large displacement changes in the outer model. This has 20

been observed using both option (1) and (2) above. Consequently, the coupled model 21

has not been evaluated and so no further validation was achieved. 22

6.5 Conclusion and Future Work 23

Developing a solution method that is able to converge with the coupled models or 24

modifying the models such that they can be solved with a black box solver are the 25

obvious next steps. Beyond that, there are a plethora of opportunities. A longer 26

term objective would be to include dynamics as predicting the evolution of the ring in 27

non-stable conditions would enable considerable process innovation, discussed further 28

in the section below. 29

Alternative applications of this framework could include modelling a series of 30

rolling stands; the influence of one stand on the next could be of use in designing 31

and controlling rolling mills. This could capture some of the new developments in 32
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multi-stand rolling, such as snake rolling (Van Der Winden, 2005) where horizontally1

offset rolls with different peripheral speeds increase strains to refine grain structure2

and improve material properties.3

By analogy, a two dimensional version of this framework could model the English4

wheel process, also discussed in the following sections.5

6.5.1 Dynamics6

Inertia of the entire workpiece moving as a rigid body would dominate the small7

deflections caused by the change of shape of roll gap. Considering only displacments of8

the workpiece as a rigid body provides an avenue to include dynamic effects into this9

model. The rigid body motion of the ring will be governed by10

¨̃x = Fhin + Fhout + Min

ỹ + ∆yin
+ Mout

ỹ + ∆yout
(6.20a)11

and ¨̃y = Fvin + Fvout + Min

x̃+ ∆xin
+ Mout

x̃+ ∆xout
(6.20b)12

13

where x̃ and ỹ denote the center of mass of the ring; ∆xin/out and ∆yin/out denote the14

position of the beam centreline ends; and Fhin, Fhout, Fvin, Fvout, Min and Mout are the15

horizontal forces, vertical forces and moments at the inlet and outlet. The rotation of16

the workpiece could also be determined this way but is ommitted as, once up to speed,17

this should not vary significantly. These equations could be solved numerically with18

the forcing terms from evaluating the inner model.19

If successful, this model could be a major development in modelling ring rolling20

as the dynamics of the process have not yet been captured in an analytical model.21

This would support new developments of ring rolling by allowing non-circular and22

non-axial products to be formed. This would also facilitate the design and control of23

conventional ring rolling as this model could predict unstable operating regimes.24

6.5.2 English Wheel25

The processes of wheeling, or the English wheel, is in some ways a two dimensional26

rolling model and shell theory analogue to the one dimensional slab model and beam27

theory ring rolling framework proposed. Ring rolling uses repeated rolling passes to28

locally thin and lengthen a closed beam, incrementally modifying the curvature and29
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size of that beam; the English wheel uses repeated rolling passes to locally thin and 1

expand a shell, incrementally modifying the curvature of that shell. 2

The beginning of a model for the English wheel process is proposed here. Like 3

the ring rolling model, an inner, plastic problem within the roll gap is considered 4

seperately from an outer elastic problem. A possible outer model is described in the 5

following sections and some discussion of an inner model and coupling is given in a 6

section following those. 7

Outer Problem Formulation 8

To model the outer plastic section, the accumulated effect of rolling will be described 9

as pre-strains and induced curvature. 10

Decomposing the in-plane stress and strain into stretching and bending components, 11

the energy density can similarly be decomposed into 12

us = t

2 (σxx (ϵxx − ϵx0) + σyy (ϵyy − ϵy0) + τxy (γxy − γxy0)) and ub = 1
2 (Mx (κx − κx0) +My (κy − κy0) + 2Mxy (κxy − κxy0))

(6.21)

13

14

where us and ub are the stretching and bending energy densities; σxx, σyy, τxy, Mx, 15

My and Mxy are the stretching and bending stresses; and, ϵxx, ϵyy, γxy, κx, κy and 16

κxy are the stretching and bending strains. The naughted strain variables denote the 17

non-stressed state due to the pre-straining of rolling. Using a linear-elastic constitutive 18

law, 19

ϵxx − ϵx0 = 1
E

(σxx − νσyy) , (6.22) 20

ϵyy − ϵy0 = 1
E

(σyy − νσxx) , (6.23) 21

γxy − γxy0 = τxy

E
, (6.24) 22

23

24

Mx = Et3

12 (1 − ν2) (κx − κx0 + ν (κy − κy0)) , (6.25) 25

My = Et3

12 (1 − ν2) (κy − κy0 + ν (κx − κx0)) (6.26) 26

and Mxy = Et3

6 κxy (6.27) 27
28
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where t is the sheet thickness, the energy density equations can be written as1

us = t

2E
(
σ2

xx + σ2
yy − 2νσxxσyy + τ 2

xy

)
− t

2E (σxxϵx0 + σyyϵy0 + τxyγxy0) (6.28)2

and ub = Et3

24(1 − ν2

(
κ2

x + κ2
y + 2νκxκy + 4

(
1 − ν2

)
κ2

xy

)
3

− Et3

24 (1 − ν2)
(
κx0 (κx + νκy) + κy0 (κy + νκx) + 4

(
1 − ν2

)
κxy0κxy

)
.

(6.29)

4

5

Minimising these energies will give equilibrium states of the shell. However, this6

formulation requires compatibility and equilibrium to be enforced. Compatibility7

requires the necessary stretching deformation for changes in Gaussian curvature and8

can be expressed as9

− ∆K =
(
κxκy − κ2

xy

)
=
(
∂2ϵy

∂x2 + ∂2ϵx

∂y2 − ∂2γxy

∂x∂y

)
. (6.30)10

Equilibrium is enforced by using the Airy stress function, which gives11

σxx = ∂2φ

∂y2 , (6.31a)12

σyy = ∂2φ

∂x2 (6.31b)13

and τxy = − ∂2φ

∂x∂y
. (6.31c)14

15

This gives the constrained optimisation problem, to minimise the energy,16

minimise17 ∫
A

t

2E

(∂2φ

∂y2

)2

+
(
∂2φ

∂x2

)2

− 2ν
(
∂2φ

∂y2
∂2φ

∂x2

)
+
(
∂2φ

∂x∂y

)2

18

−∂2φ

∂y2 ϵx0 − ∂2φ

∂x2 ϵy0 − ∂2φ

∂x∂y
γxy0

)
19

+ Et3

24 (1 − ν2)
(
κ2

x + κ2
y + 2νκxκy + 4

(
1 − ν2

)
κ2

xy

)
20

− Et3

24 (1 − ν2)
(
κx0 (κx + νκy) + κy0 (κy + νκx) + 4

(
1 − ν2

)
κxy0κxy

)
dA

(6.32a)

21

22
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subject to 1(
κxκy − κ2

xy

)
= 1
E

(
3 ∂4φ

∂2x∂2y
− ν

(
∂4φ

∂x4 + ∂4φ

∂y4

))
, (6.32b) 2

and the plate boundary conditions of zero force. This is a quadratic minimisation 3

problem with quadratic constraints. 4

Outer Problem Solution 5

The constrained optimisation can be implemented using Chebyshev polynomials. A 6

square, unit length shell is assumed and each of the variables, κx, κy and φ, are 7

expanded using 8

U(x, y) =
i=N,j=M∑
i=0,j=0

uijTi(2x− 1)Tj(2y − 1). (6.33) 9

Equation (6.32a) and equation (6.32b) can be solved as a constrained problem or 10

expressed using a Lagrange multiplier: in matrix form, 11

minimiseλ,µ,x 12

xT · A · x + λ (c · x − 2c · x0 + x · C · x)2 + µ (x ·B)2 . (6.34) 13
14

The minimisation of either formulation has not yet been successfully implemented. 15

This is due to two challenges. First, compatible solutions as initial guesses are not 16

trivial. It may be fruitful to investigate the dual problem, optimising for compatibility 17

given equilibrium as a condition, as the trivial zero-stress state satisfies equilibrium 18

but not compatibility. Secondly, many local optima can exist, which represent locally 19

stable states of the shell. Locally stable shapes may be desired as intermediate steps in 20

a wheeling process. Unfortunately, it is not clear how to minimise either formulation 21

to achieve a particular state, nor whether a given state is globally or locally optimal. 22

There has been a great deal of research conducted on the topic of multiply-stable shells, 23

such as K. A. Seffen et al. (2011), K. Seffen (2007), and Vidoli (2013), which may offer 24

solutions to these challenges. 25

Some recent work has also been found that solves this problem for a different 26

application using finite element analysis (Jones et al., 2015) over the spectral type 27

approach presented here. 28
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Inner Problem and Coupling1

The other key component for this model is the inner problem which is by no means2

trivial. A finite element analysis of this small region could be feasible; however, it would3

be more desirable to construct a faster, more analytical model. Three dimensional4

rolling models have been presented in literature. One example is R. E. Johnson (1991),5

which assumes the roll gap width is of similar size to the roll gap length and derives6

Poisson’s equation for the horizontal velocity field. Although an appropriate scaling7

for wheeling and alternative boundary conditions would have to be incorporated, R. E.8

Johnson (1991) provides a possible means of approaching this problem.9

Once an inner solution is developed, these solutions would need to be coupled then10

solved for each update of the shape of the workpiece as the process is incrementally11

stepped through.12

This would be the first mathematical model of the English Wheel and provide a13

basis for its control and automation. This approach could also be used to model other14

sheet forming processes with localised deformations, spinning for example.15
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Chapter 7 1

Conclusion and Further Work 2

This thesis presents work that makes systematic progress in understanding the complex 3

behaviour of asymmetrical rolling. This includes asymmetric and clad-sheet asymptotic 4

models that illustrate a robust method of constructing thin-sheet rolling models 5

appropriate for real time prediction and control; a statistical analysis and review 6

of studies into curvature to characterise the complex curvature trends and better 7

understand the mechanisms driving it; a thick-sheet asymptotic model with new 8

scalings to capture through thickness variation in stress and strain fields, which could 9

be used to optimise material evolution during the process; and novel concepts for 10

modelling ring rolling and the English wheel process that would facilitate, for the first 11

time in the latter case, efficient numerical control. In retrospect this work advances three 12

areas: the study of curvature response to rolling configurations, primarily investigated 13

in Chapter 4 with some supporting simulation results from Chapter 5; the development 14

of asymptotic models, primarily the three models from Chapter 2, Chapter 3 and 15

Chapter 5; and the application of rolling models to describe other processes, specifically 16

the concepts presented in Chapter 6 with some new potential approaches arising from 17

the model in Chapter 5. 18

Curvature Prediction 19

Workpiece curvature in rolling is an old problem as it can cause damage to the rolling 20

machinery and stop sheet production. It also has the potential to unlock lower energy 21

asymmetric processes that can produce higher quality materials in more varied shapes. 22

Surprisingly, it is not as well understood as one might think. Contradictions were found 23

in the literature; for example, induced curvature was observed towards and away from 24
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the roll with higher friction coefficient. While some contradictions can be reconciled1

by considering additional parameters, such as reduction and roll gap aspect ratio,2

others remain dissonant. Data from fifteen publications were digitised to resolve these3

remaining contradictions and find unifying curvature trends. Despite being the largest4

data-set analysed, the following statistical analysis was unable to produce a robust5

model to predict curvature; however, insight was gained that could prove useful for6

future work. Strong interaction between the roll radius asymmetry, the reduction and7

the roll gap aspect ratio was found as well as material properties having a significant8

effect.9

Published analytical models were also studied. Many were not able to be reproduced10

due to omissions or errors in those papers. The two models that were implemented,11

Dewhurst, I. F. Collins, and W. Johnson (1974) and Salimi and Sassani (2002),12

both only showed linear trends between curvature and any of the three asymmetries13

considered. These findings cast doubt on the proposed curvature mechanisms these14

works present. Evidence from the literature review suggests that curvature may be15

driven by asymmetric forces toward the exit of the roll gap; Yoshii et al. (1991) observed16

larger regions of strain near the exit of the roll gap, which varies with geometry and17

roll speed asymmetry.18

The still unclear trends and the illusive mechanisms call for more investigation into19

this area. The work presented here can hopefully provide a basis to inform future20

studies: which parameters should be considered in a study and what behaviours a21

predictive model must exhibit. A more comprehensive analysis of analytical curvature22

models may reveal phenomena and mechanisms captured by some that others do23

not, in particular the I. Collins et al. (1975) model appears promising for capturing24

non-linear trends with varying reduction. It seems doubtful that any single model25

from literature will robustly predict curvature over a range of parameters but insights26

pieced together from a range of models could provide insight into the mechanisms of27

curvature and inform the development of new, more unifying models. Alternatively,28

extensive simulations of various rolling configurations, particularly investigating the29

interactions discussed in Chapter 4, could provide better evidence from which to form30

this insight.31

Asymptotic Modelling of Rolling32

Two sets of assumptions were used to construct a number of new asymmetric rolling33

models using asymptotic techniques. The first uses the model formulation of Domanti34
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and McElwain (1995) and the scaling presented in Cherukuri et al. (1997): a rigid 1

perfectly plastic workpiece rolling under Coulomb friction with a small roll gap aspect 2

ratio and small friction coefficients. Asymmetries in roll size, roll speed and roll- 3

workpiece friction were added. The leading order solutions can be made to agree with 4

slab models, Y. Hwang and Tzou (1993) for example, but additionally provide complete 5

stress and strain field solutions. Further, asymptotic correction terms are solved to 6

provide increased resolution to these field solutions. 7

The systematic nature of this method means alternative friction and material models 8

are easily incorporated into the formulation. This includes, but is not limited to, any 9

friction model that remains small compared to the yield stress and any material model 10

with a yield surface dependent on strains. This has been illustrated with models of 11

alternative friction laws and a model that includes an asymmetric clad-sheet workpiece. 12

Comparisons were made with finite element simulations from ABAQUS , the 13

commercial finite element package. As expected from published slab models, roll 14

force, roll torque and neutral point position are predicted well. Also expected from 15

the asymptotic assumptions, accuracy deteriorates as the roll gap aspect ratio or 16

magnitudes of friction increase; although the latter may not be expected from slab 17

models, which illustrates the danger in using ad hoc assumptions. The models presented 18

here, and most slab models, also assume that the material throughout the roll gap 19

has reached yield and that the contact points between the workpiece and the rolls 20

are horizontally aligned. Torque was found to be poorly predicted by any amount of 21

clad-sheet inhomogeneity. The leading hypothesis is that elastic strains in each layer 22

of the sheet induce inlet curvature, violating the horizontally aligned contact points 23

assumption. This would occur for all slab models and further illustrates the need for 24

validation of all models in the regimes in which they are to be used. 25

Yet another discrepancy that illustrates the need for validation is the numerical 26

shear stress and vertical velocity fields, which exhibit oscillations, or lobes, throughout 27

the roll gap. These are not captured by the thin-sheet asymptotic models, nor by other 28

published analytical models. In the limit of small roll gap aspect ratios, the limit in 29

which the thin-sheet asymptotic models were derived, sufficiently many lobes merge 30

together so that the shear strain fields agree with the thin-sheet models; however, 31

more complex behaviour is exhibited for roll gap aspect ratios as small as 0.1. This 32

motivated a novel model with a second set of asymptotic assumptions to allow for 33

through thickness variation of stress and strain. By considering small reductions instead 34

of a small roll gap aspect ratio, the governing equations took the form of two sets of 35
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wave equations at leading order without changing the boundary condition. A minimal1

implementation of this model captures the shear lobes observed in the numerical results,2

despite crude approximations defining the new inlet boundary conditions. This model3

also shows some indication of capturing non-linear behaviour in curvature, although4

further development is required to directly make curvature predictions.5

This project, in collaboration with the Department of Engineering, began with6

intentions of constructing a demonstration rolling machine, able to apply heating,7

asymmetric roll drive and arbitrary end conditions. Although this was found to be8

infeasible, such an endeavour would be beneficial as it could be used to find the9

operational limits of these models and inform which developments are important. For10

example, the alignment of the entry and exit of the workpiece has been shown to be11

important in some cases; however, these conditions remain uncharacterised. Further,12

these models may be directly applicable to processes like extrusion or drawing; however,13

validation of these extreme forcing regimes would be required.14

From what is known, additional phenomena can be identified to tailor these models15

to specific applications. This could include:16

• Strain or work hardening to more accurately model specific workpiece materials.17

• Temperature dependence and micro-structure evolution modelling to model hot18

rolling processes.19

• Elastic roll response to model the roll flattening that occurs during foil rolling.20

• Span-wise variation to capture roll deflections and to begin modelling roll forming.21

Elasticity is the last significant phenomenon identified in this work. It impacts22

the rolling processes in a range of ways, such as residual stresses inducing inlet and23

outlet curvature as well as impacting product quality; spring back changing the final24

thickness of the product; and perhaps regularizing the discontinuity at the neutral25

point by allowing a sub-yield or sticking region. Unfortunately, all attempts to include26

elasticity into models have proven very difficult. The thick-sheet asymptotic model has27

the potential to match with an elastic outer solution and this could prove a fruitful28

avenue of future investigation.29

Rolling Model Applications30

Assuming curvature prediction can be achieved and using an extended slab model31

similar to the Aboutorabi et al. (2016) model as such a predictor, a coupling with32
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the Timoshenko et al. (1925) curved beam model is proposed for modelling ring 1

rolling. While this coupling could not be made to converge, it offers an approach to 2

modelling ring rolling without assumptions of circularity, centrality or coaxiality, which 3

is substantially more general than existing models of ring rolling. Time stepping is 4

proposed to also incorporate dynamics into the model, which would facilitate control 5

and tool path optimisation. More sophisticated simulations than those conducted here 6

could provide verification of the inner and outer models independently, or insight about 7

how they interact. Understanding the role of guide rolls and the forcing of the ring 8

into non-central positions would also be useful for control. 9

With the development of a finite-width-roll model and shell theory, this framework 10

could be extended to three dimensions for modelling the English wheel. Investigation 11

into the rolling regime that occurs during the English wheel process would be necessary 12

for this but some existing three dimensional models could form a starting point for 13

this work (Domanti, McElwain, and Middleton, 1994; Karabin and R. E. Johnson, 14

1993). An outer shell-theory model was formulated for this application but not solved; 15

however, Jones et al. (2015) presents an alternative, finite-element-type solution to 16

this problem. No automation or even model of this process has yet been published so 17

developing this work could contribute to a new automated, flexible forming process. 18

In a more general sense the big challenges to modelling other forming processes are 19

three fold: mixed boundary conditions, because forming tools are typically smaller than 20

the workpiece; the transition between sub-yield and yield, because it is rare that plastic 21

deformation occurs everywhere in a process; and the evolution of geometry, because 22

most processes are not continuous. None of these challenges occur when considering 23

the inner rolling problem, allowing the many advances in this area. The models 24

presented in Chapter 6 make crude approximations about the first two challenges, and 25

an approach for the third is presented as a suggestion for future work. More successful 26

treatment of these challenges, such as matching the model in Chapter 5 to a mixed 27

boundary problem or solving the elastic-plastic transition with a free surface, could 28

unlock modelling of numerous processes and considerably progress the field. 29

The modelling presented here has matured rolling models sufficiently that several 30

new approaches are now available. It is hoped that future work can build on these 31

models to overcome these challenges since analytical models of forming processes can 32

facilitate control systems to bring forming into the CNC world, unleashing an era of 33

bespoke, low-energy, high-quality manufacturing. 34
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Appendix A 1

Asymmetric Rolling Asymptotic 2

Correction 3

It was noted in Chapter 2 that all the O (δ) terms were zero. Continuing the expansion 4

from Section 2.3 in orders of δ, the second order governing equations are 5

−β∂p
(2)

∂x
+ ∂s(2)

xx

∂x
+ β

∂s(2)
xy

∂y
= 0, (A.1) 6

−β∂p
(2)

∂y
− ∂s(2)

xx

∂y
+ β

∂s(0)
xy

∂x
= 0, (A.2) 7

∂u(2)

∂x
= λ(0)s(2)

xx + λ(2)s(0)
xx , (A.3) 8

∂u(2)

∂y
+ ∂v(0)

∂x
= 2βλ(0)s(0)

xy , (A.4) 9

∂u(2)

∂x
+ ∂v(2)

∂y
= 0 (A.5) 10

and 2s(0)
xx s

(2)
xx + β2s(0)2

xy = 0. (A.6) 11
12
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Likewise, the boundary conditions are1

s(2)
xy (x, ht(x)) = γt

(
βp(2)(x, ht) + s(2)

xx

)
+ 2
β
s(2)

xx (x, ht)
dht

dx
2

+ 2βγt

s(0)
xy (x, ht)

dht

dx
+ p(0)(x)

(
dht

dx

)2
3

+ 2
β
s(0)

xx (x)
(
dht

dx

)3

,4

s(2)
xy (x, hb(x)) = γb

(
βp(2)(x, hb) + s(2)

xx

)
+ 2
β
s(2)

xx (x, hb)
dhb

dx
5

+ 2βγb

s(0)
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dhb

dx
+ p(0)(x)

(
dhb

dx

)2
6

+ 2
β
s(0)

xx (x)
(
dhb

dx

)3

, (A.7)7

8

9

∫ ht(0)

hb(0)
−βp(2)(0, y) + s(2)

xx (0, y)dy = 0,10 ∫ ht(1)

hb(1)
−βp(2)(1, y) + s(2)

xx (1, y)dy = 0, (A.8)11 ∫ ht(x)

hb(x)
u(2)(x, y)dy = 0, (A.9)12

v(2)(x, ht(x)) = dht(x)
dx

u(2)(x, ht(x))13

andv(2)(x, hb(x)) = dhb(x)
dx

u(2)(x, hb(x)). (A.10)14
15

The second order correction to the horizontal velocity can be determined by16

integrating equation (A.4) with respect to y, which gives17

u(2) = 2βλ(0)
∫
s(0)

xy dy −
∫ ∂v(0)

∂x
dy18
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where the constant of integration can be determined using equation (A.9). This 1

ultimately leads to 2

u(2)(x, y) = 2
∆h2

(y − h2
t − h2

b

2∆h

)(
2βd∆h

dx
K(x) 3

−
(
ht
d2hb

dx2 − hb
d2ht

dx2

)
2

∆h
d∆h
dx

(
ht
dhb

dx
− hb

dht

dx

))
4

+
(
y2

2 − h3
t − h3

b

6∆h

)2βd∆h
dx

dp(0)

dx
− d2∆h

dx2 + 2
∆h

(
d∆h
dx

)2
 (A.11) 5

6

where K(x) is defined by equation (2.28c). 7
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Differentiating u(2) with respect to x and integrating with respect to y gives the1

second order correction to vertical velocity from equation (A.5),2

v(2) = −
∫ ∂u(2)

∂x
dy3

= 4
∆h3

d∆h
dx

{2βd∆h
dx

K(x) −
(
ht
d2hb

dx2 − hb
d2ht

dx2

)
4

+ 2
∆h

d∆h
dx

(
ht
dhb

dx
− hb

dht

dx

)}(
y2

2 − h2
t − h2

b

2∆h y

)
5

+
{

2βd∆h
dx

dp(0)

dx
− d2∆h

dx2 + 2
∆h

(
d∆h
dx

)2 }(
y3

6 − h3
t − h3

b

6∆h y

)6

− 2
∆h2

{2βd
2∆h
dx2 K(x) + 2βd∆h

dx

dK

dx
7

−
(
ht
d3hb

dx3 + dht

dx

d2hb

dx2 − d2ht

dx2
dhb

dx
− d3ht

dx3 hb

)
8

+
 2

∆h
d2∆h
dx2 − 2

∆h2

(
d∆h
dx

)2
(ht

dhb

dx
− hb

dht

dx

)
9

+ 2
∆h

d∆h
dx

(
ht
d2hb

dx2 − hb
d2ht

dx2

)}(
y2

2 − h2
t − h2

b

2∆h y

)
10

+
{

2βd∆h
dx

K(x) −
(
ht
d2hb

dx2 − hb
d2ht

dx2

)
+ 2

∆h
d∆h
dx

(
ht
dhb

dx
− hb

dht

dx

)}
11 (

h2
t − h2

b

2∆h2
d∆h
dx

− 1
∆h

(
ht
dht

dx
− hb

dhb

dx

))
y12

+
{

2βd
2∆h
dx2

dp(0)

dx
+ 2βd∆h

dx

d2p(0)

dx2 − d3∆h
dx3 + 4

∆h
d∆h
dx

d2∆h
dx213

− 2
∆h2

(
d∆h
dx

)3 }(
y3

6 − h3
t − h3

b

6∆h y

)
14

+
{

2βd∆h
dx

dp(0)

dx
− d2∆h

dx2 + 2
∆h

(
d∆h
dx

)2 }
15

(
h3

t − h3
b

6∆h2
d∆h
dx

− 1
2∆h

(
h2

t

dht

dx
− h2

b

dhb

dx

))
y

+ c1(x). (A.12)16

17

The function c1(x) can be determined algebraically from the velocity boundary condi-18

tions, equation (A.10), giving19

c1(x) = dht

dx
u(2)(x, ht) − v(2)−(x, ht) (A.13)20
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where v(2)− = v(2) − c1(x). 1

The second order correction to the longitudinal deviatoric stresses follow from 2

equation (A.6) as 3

s(2)
xx = −s(2)

yy = −β2 s
(0)2
xy

2s(0)
xx

(A.14) 4

and the correction to the flow rate parameter is found from equation (A.3) to be 5

λ(2) = 1
s

(0)
xx

(
∂u(2)

∂x
− λ(0)s(2)

xx

)
. (A.15) 6

Substituting equation (2.31) into equation (A.2) reveals the form of p(2) as 7

p(2) =
∫ ∂s(0)

xy

∂x
dy − s(2)

xx

β
8

= d2p(0)

dx2
y2

2 + dK

dx
y − s(2)

xx

β
+ c2(x) (A.16) 9

10

and substituting this result into equation (A.1) shows the form of s(2)
xy to be 11

s(2)
xy = y3

3

(
1
2
d3p(0)

dx3 + 2β
s

(0)
xx

dp(0)

dx

d2p(0)

dx2

)
12

+ y2

2

(
d2K

dx2 + 2β
s

(0)
xx

(
dp(0)

dx

dK

dx
+ d2p(0)

dx2 K

))
13

+ y

(
dc2

dx
+ 2β
s

(0)
xx

dK

dx
K

)
+ c3(x). (A.17) 14

15

It now remains to solve for the arbitrary functions c2(x) and c3(x) by applying the 16

force boundary conditions. Applying each friction condition to equation (A.17) and 17

eliminating c3(x) leaves a differential equation for c2(x): 18

dc2

dx
= 1

∆h
(
s(2)

xy (x, ht) − s(2)
xy (x, hb)

)
19

− 1
∆h

(
s(2)−

xy (x, ht) − s(2)−
xy (x, hb)

)
(A.18) 20

21

where the shear terms of the first line are given by the boundary conditions, equa- 22

tion (A.7), and 23

s(2)−
xy (x, y) = s(0)

xy − y
dc2

dx
− c3(x). (A.19) 24
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Like the leading order, this can be solved piecewise, ensuring continuity of horizontal1

stress along the centreline by adjusting the neutral points. The boundary conditions2

for the outer two regions are determined by the end tensions, equation (A.8), to be3

c2(x) = − d2p(0)

dx2
h3

t − h3
b

6∆h − dK

dx

h2
t − h2

b

2∆h4

− β

∆hs(0)
xx

(dp(0)

dx

)2
h3

t − h3
b

3 + dp(0)

dx
K
(
h2

t − h2
b

)
+K2∆h

 (A.20)5

6

for x = 0, 1. Finally, this result is substituted back into equation (A.17) with one of7

the two friction conditions to yield c3(x),8

c3(x) = s(2)
xy (x, ht) − s(2)−

xy (x, ht) − ht
dc2

dx
(A.21)9

10

where, once again, the first term is given by the boundary condition equation (A.7)11

and s(2)−
xy is defined by equation (A.19).12
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Appendix B 1

Clad Sheet Rolling Asymptotic 2

Correction 3

Writing out the expansions of the interfacial boundary conditions shows that the first 4

order correction is identically zero as there are no non-zero boundary contributions. 5

This is true for the interfacial surface also. The O (δ2) governing equations are then 6

−β∂p
(2)

∂x
+ ∂s(2)

xx

∂x
+ β

∂s(2)
xy

∂y
= 0

−β∂p
(2)

∂y
− ∂s(2)

xx

∂y
+ β

∂s(0)
xy

∂x
= 0

∂u(2)

∂x
= λ(2)s(0)

xx + λ(0)s(2)
xx + λ(1)s(1)

xx

∂u(2)

∂y
+ ∂v(0)

∂x
= 2βλ(0)s(0)

xy

∂u(2)

∂x
+ ∂v(2)

∂y
= 0

and 2s(2)
xx s

(0)
xx + s(1)2

xx + β2s(0)2
xy = 0

−β∂P
(2)

∂x
+ ∂S(2)

xx

∂x
+ β

∂S(2)
xy

∂y
= 0, (B.1)

−β∂P
(2)

∂y
− ∂S(2)

xx

∂y
+ β

∂S(0)
xy

∂x
= 0, (B.2)

∂U (2)

∂x
= Λ(2)S(0)

xx + Λ(0)S(2)
xx + Λ(1)S(1)

xx , (B.3)

∂U (2)

∂y
+ ∂V (0)

∂x
= 2βΛ(0)S(0)

xy , (B.4)

∂U (2)

∂x
+ ∂V (2)

∂y
= 0 (B.5)

2S(2)
xx S

(0)
xx + S(1)2

xx + β2S(0)2
xy = 0 (B.6)

7
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with interfacial boundary conditions1

u(2)(x, g(0)) + g(2) ∂u
(0)

∂y

∣∣∣∣∣
y=g(0)

= U (2)(x, g(0)) + g(2) ∂U
(0)

∂y

∣∣∣∣∣
y=g(0)

,2

v(2)(x, g(0)) + g(2) ∂v
(0)

∂y

∣∣∣∣∣
y=g(0)

= V (2)(x, g(0)) + g(2) ∂V
(0)

∂y

∣∣∣∣∣
y=g(0)

, (B.7)3

4

5

− 2
dg(2)

dx
s(0)

xx (x, g(0)) + dg(0)

dx

s(2)
xx (x, g(0)) + g(2) ∂s

(0)
xx

∂y

∣∣∣∣∣
y=g(0)

6

+ β

−
(
dg(0)

dx

)2

s(0)
xy (x, g(0)) + s(2)

xy (x, g(0)) + g(2) ∂s
(0)
xy

∂y

∣∣∣∣∣
y=g(0)

7

= −2
dg(2)

dx
S(0)

xx (x, g(0)) + dg(0)

dx

S(2)
xx (x, g(0)) + g(2) ∂S

(0)
xx

∂y

∣∣∣∣∣
y=g(0)

8

+ β

−
(
dg(0)

dx

)2

S(0)
xy (x, g(0)) + S(2)

xy (x, g(0)) + g(2) ∂S
(0)
xy

∂y

∣∣∣∣∣
y=g(0)

 (B.8)9

10

and11

β2

−
(
dg(0)

dx

)2

p(0)(x, g(0)) + p(2)(x, g(0)) + g(2) ∂p
(0)

∂y

∣∣∣∣∣
y=g(0)

12

+ β

−
(
dg(0)

dx

)2

s(0)
xx (x, g(0)) + s(2)

xx (x, g(0)) + g(2) ∂s
(0)
xx

∂y

∣∣∣∣∣
y=g(0)

+ βs(0)
xy

∂g(0)

∂x
13

= β2

−
(
dg(0)

dx

)2

P (0)(x, g(0)) + P (2)(x, g(0)) + g(2) ∂P
(0)

∂y

∣∣∣∣∣
y=g(0)

14

+ β

−
(
dg(0)

dx

)2

S(0)
xx (x, g(0)) + S(2)

xx (x, g(0)) + g(2) ∂S
(0)
xx

∂y

∣∣∣∣∣
y=g(0)

+ βS(0)
xy

∂g(0)

∂x
. (B.9)15

16

The second order correction can be solved using the same method as the leading17

order with additional forcing terms. The equation for shear flow gives18

∂u(2)

∂y
= 2βλ(0)s(0)

xy − ∂v(0)

∂x

∂U (2)

∂y
= 2βΛ(0)S(0)

xy − ∂V (0)

∂x
(B.10)19

so, with sufficient generality to caputre the leading order terms, the velocity correction20

is defined as21

u(2) = a(x)y
2

2 + b(x)y + c(x) U (2) = A(x)y
2

2 +B(x)y + C(x). (B.11)22
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By performing the integration, two of the three coefficients are determined, 1

a(x) =
(

2
∆h

d∆h
dx

− d2∆h
dx2

)
2

∆h2 + 2βλ(0)dp
(0)

dx
2

b(x) = 2
∆h

((
ht
d2hb

dx2 − hb
d2ht

dx2

)
− 2

∆h
d∆h
dx

(
ht
dhb

dx
− hb

dht

dx

))
3

+ 2βλ(0)
(

−ht
dp(0)

dx
+ γt

(
βp(0) + s(0)

xx

)
+ s(0)

xx

2
β

dht

dx

)
4

5

A(x) =
(

2
∆h

d∆h
dx

− d2∆h
dx2

)
2

∆h2 + 2βΛ(0)dP
(0)

dx
(B.12) 6

B(x) = 2
∆h

((
ht
d2hb

dx2 − hb
d2ht

dx2

)
− 2

∆h
d∆h
dx

(
ht
dhb

dx
− hb

dht

dx

))
(B.13) 7

+ 2βΛ(0)
(

−hb
dP (0)

dx
+ γb

(
βP (0) + S(0)

xx

)
+ S(0)

xx

2
β

dhb

dx

)
, 8

9

and mass conservation,
∫ g

hb
U (2)dy = 0 and

∫ ht
g u(2)dy = 0, determines the third, 10

c(x) =
g(2)u(0) +

∫ ht
g ū(2)dy

g(0) − ht

C(x) =
g(2)U (0) +

∫ g
hb
Ū (2)dy

hb − g(0) . (B.14) 11

Using this result and the incompressibility condition, the vertical velocities can be 12

determined as 13

v(2) = −da

dx

y3

3 − db

dx

y2

2 − dc

dx
y+ d(x) V (2) = −dA

dx

y3

3 − dB

dx

y2

2 − dC

dx
y +D(x) (B.15) 14

where the functions d(x) and D(x) are determined using the no penetration boundary 15

conditions for 16

d(x) = dht

dx
u(2)(ht) + da

dx

h3
t

3 + db

dx

h2
t

2 + dc

dx
ht (B.16) 17

and 18

D(x) = dhb

dx
U (2)(hb) + dA

dx

h3
b

3 + dB

dx

h2
b

2 + dC

dx
hb. (B.17) 19

The yield condition gives the sxx terms, 20

s(2)
xx =

β2s(0)2
xy

2s(0)
xx

S(2)
xx =

β2S(0)2
xy

2S(0)
xx

, (B.18) 21
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and then the vertical force balance gives1

∂p(2)

∂y
=
∂s(0)

xy

∂x
− 1
β

∂s(2)
xx

∂y
(B.19)2

and p(2) =
∫ ∂s(0)

xy

∂x
dy − 1

β
s(2)

xx (B.20)3

= f(x, y) + c2(x) (B.21)4
5

where6

f(x, y) = d2p(0)

dx2

(
y2

2 − ht(x)y
)

− dp(0)

dx
h′

t(x)y + βγt

(
β
dp(0)

dx
+ ds(0)

xx

dx

)
y7

+ ds(0)
xx

dx

2
β

dht

dx
y + s(0)

xx

2
β

d2ht

dx2 y − 1
β
s(2)

xx . (B.22)8

9

Similarly,10

P (2) = F (x, y) + C2(x) (B.23)11

12

F (x, y) = d2P (0)

dx2

(
y2

2 − hb(x)y
)

− dP (0)

dx
h′

b(x)y + βγb

(
β
dP (0)

dx
+ dS(0)

xx

dx

)
y (B.24)13

+ dS(0)
xx

dx

2
β

dhb

dx
y + S(0)

xx

2
β

d2hb

dx2 y − 1
β
S(2)

xx . (B.25)14

15

The normal stress interfacial boundary condition, equation (B.9), relates c2 and C2,16

C2(x) = c2(x) −
(
dg(0)

dx

)2 (
p(0)(x, g(0)) − P (0)(x, g(0))

)
+
(
f(x, g(0)) − F (x, g(0))

)
17

+ 1
β

−
(
dg(0)

dx

)2 (
s(0)

xx − S(0)
xx

)
+
(
s(2)

xx − S(2)
xx

)
+ dg(0)

dx

(
s(0)

xy − S(0)
xy

) , (B.26)18

19

which will be written as C2(x) = c2(x) +G(x) for brevity. The horizontal force balance20

can be solved for21

s(2)
xy (ht(x)) − s(2)

xy (g(0)) =
∫ ht

g(0)

∂f

∂x
− 1
β

∂s(2)
xx

∂x
dy + dc2

dx

(
ht(x) − g(0)(x)

)
(B.27)22

23

and24

S(2)
xy (g(0)) − S(2)

xy (hb) =
∫ g(0)

hb

∂F

∂x
− 1
β

∂S(2)
xx

∂x
dy + dC2

dx

(
g(0)(x) − hb(x)

)
. (B.28)25

26
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Applying the tangiental stress interfacial boundary condition, equation (B.8), and the 1

previous three results, an ODE for c2 can be found, 2

dc2

dx
∆h = 2dg

(2)

dx

(
s(0)

xx − S(0)
xx

)
+ 2dg

(0)

dx

(
s(2)

xx − S(2)
xx

)
(B.29) 3

− β

(
dg(0)

dx

)2 (
s(0)

xy − S(0)
xy

)
+ βg(2)

(
ds(0)

xy

dy
−
dS(0)

xy

dy

)
+
(
s(2)

xy (ht) − S(2)
xy (hb)

)
4

−
∫ ht

g(0)

∂f

∂x
− 1
β

∂s(2)
xx

∂x
dy +

∫ g(0)

hb

∂F

∂x
− 1
β

∂S(2)
xx

∂x
dy +

(
hb − g(0)

) dG(x)
dx

5

6

Finally, 7

s(2)
xy =

∫ y

ht

∂f

∂x
− 1
β

∂s(2)
xx

∂x
dy + dc2(x)

dx
(y − ht(x)) + s(2)

xy (ht(x)) 8

S(2)
xy =

∫ y

hb

∂F

∂x
− 1
β

∂S(2)
xx

∂x
dy + dC2(x)

dx
(y − hb(x)) + S(2)

xy (hb(x)) 9

10

which can be closed with the surface friction boundary conditions. 11
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Appendix C 1

Statistical Method 2

This appendix provides greater detail of the digitised data and regression models 3

presented in Chapter 4. 4

C.1 Data Exploration 5

Some initial checks of the data are conducted to ensure no unusual features exist in 6

the dataset. A histogram and box plot of the curvature values, Figure C.1, shows that 7

the data are almost normally distributed, with a slight left skew and heavy tails. This 8

is verified by a Q-Q plot, Figure C.2: the flat gradient indicates heavy tails and greater 9

deviation to the left hand end indicates a left skew. A scatter matrix, Figure C.3, 10

shows a great deal of structure to the data but no concerning amount of correlation 11

between the independent variables. This is expected considering the design of the 12

experiments these data were collected from. 13

Both Figure C.1 and Figure C.3 show a number of outliers; however, these will be 14

the Buxton et al. (1972) dataset, discussed in Chapter 4. 15
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Fig. C.3 Scatter matrix of the digitsed curvature data.
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Regression over Asymmetric Terms2

This model achieves an adjusted R-squared value of 0.40 with three variables over 10393

data. Table C.1 shows the fitted coefficients and Figure C.4 plots the distribution of4

the residuals against each regressor and the curvature. There is correlation with the5

curvature indicating higher order terms may be required.

Table C.1 Linear Regression Coefficients for the Asymmetric Terms
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Fig. C.4 Residuals from regression over the asymmetric terms.
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Regression over Asymmetric by Non-asymmetric Terms 1

This model achieves an adjusted R-squared value of 0.52 with twelve variables over 1034 2

data. An ANOVA p-value of 2.7 × 10−50 was found with the previous model indicating 3

that the additional variables capture significantly more of the trend. Table C.2 gives 4

the fitted coefficients and Figure C.5 shows the distribution of residuals against each 5

regressor and the curvature.

Table C.2 Linear Regression Coefficients for the Asymmetric by Non-asymmetric Terms
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Fig. C.5 Residuals from regression over the asymmetric by non-asymmetric terms.
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Terms2

This model achievs an adjusted R-squared value of 0.69 with 47 variables over 1034 data.3

ANOVA p-values of 8.1 × 10−78 was found with the previous model and 8.1 × 10−125
4

with the first model presented showing this model captures significantly more of5

the curvature trend than either of the previous models. Table C.3 gives the fitted6

coefficients and Figure C.6 shows the distribution of residuals against each regressor7

and the curvature.
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Fig. C.6 Residuals from regression over the asymmetric and cubed asymmetric by
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Table C.3 Linear Regression Coefficients for the Asymmetric and Cubed Asymmetric
by Non-asymmetric Terms
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Terms with P-value over 1 × 10−4
2

This model achievs an adjusted R-squared value of 0.66 with fifteen variables over3

1034 data points. An ANOVA p-value of 3.1 × 10−13 was found with the previous4

model that suggests the full cubed model captures significantly more of the curvature5

trend than this model. Table C.4 gives the fitted coefficients and Figure C.7 shows the6

distribution of residuals against each regressor and the curvature.

Table C.4 Linear Regression Coefficients for Cubed Asymmetric and Non-asymmetric
Terms with P-Value less than 1 × 10−4
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Fig. C.7 Residuals from regression over the asymmetric and cubed asymmetric by
non-asymmetric terms with p-value over 1 × 10−4.
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Appendix D 1

ABAQUS Simulations 2

Numerical simulations, using the ABAQUS finite element analysis package (Dassault 3

Systemes, 2012a), were used throughout this work for investigation and validation. 4

The models implemented are described in Appendix D.1 along with some discussion of 5

the objectives and challenges that motivated the design choices at each stage. Mesh 6

convergence is demonstrated in Appendix D.2 to ensure accuracy of the numerical 7

results used. The post processing used is described in Appendix D.3 and a summary of 8

the techniques applied to limit the influence of initial transients and ensure stability are 9

described in Appendix D.4. Finally, Appendix D.5 provides some detail and discussion 10

of the friction behaviour observed in the simulations, casting doubt on the description 11

provided in the ABAQUS documentation (Dassault Systemes, 2012c). 12

D.1 Simulation Configurations 13

Four main models were developed throughout this work: three dimensional explicit sheet 14

rolling, both symmatrical and asymmetrical; two dimensional explicit asymmetrical 15

sheet rolling; two dimensional implicit asymmetrical composite sheet rolling; and, two 16

dimensional explicit ring rolling without guide rolls. Each of these were to support 17

preliminary investigations; Chapters 2 and 5; Chapter 3; and Chapter 6 respectively. 18

In the following sections, each of these models are described with discussion about the 19

decisions made and developments from one model to the next. 20
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Table D.1 Parameters for 3D Symmetric Rolling

Size (m) Elements
Workpiece thickness 0.04 11

Workpiece length 0.84 167
Workpiece width 0.16 10

Roll radius 1.75 analytic

D.1.1 3D Symmetric and Asymmetric Rolling1

The first model used to simulate symmetric rolling was a parametrised version of an2

example provided in the ABAQUS Examples Manual (Dassault Systemes, 2012b).3

Parameterisation of workpiece geometry, workpiece material properties, roll size, roll4

speed and friction coefficient was achieved by generating the ABAQUS input text file,5

equivalent to that provided in the examples manual, with a Python script. The original6

version of the script was written by Dr Evripides Loukaides but was heavily modified7

for this and the following applications. This model was used as a test case for the8

ABAQUS workflow, to provide some direct intuition about the rolling process and to9

provide some intuition, by comparison, about the assumptions used in the analytical10

models discussed in Chapter 1.11

The model consisted of a single roll and a quarter workpiece about two planes of12

symmetry: one vertically and one span-wise. The physical dimensions are specified13

in Table D.1. Like most industrial rolling processes, these simulations were initialised14

with the rolls at the correct separation, rotating at speed and the workpiece out of the15

roll gap. An initial velocity is imparted to the workpiece so that it moves into the roll16

gap. With sufficient friction and momentum the rolls will pinch the workpiece after17

contact and be able to continue deformation with friction alone. The roll constraints18

did not change throughout and the simulation was conditionally terminated on the19

convergence of four values: the roll force, the roll torque, the average equivalent plastic20

strain of a cross section, and the spread of the equivalent plastic strain over the same21

cross section.22

The roll surface was defined as an analytical rigid surface with a central control23

node; rigid surfaces produce better convergence than deformable surfaces and analytical24

surfaces have greater accuracy than discretised surfaces. Roll deformation is known to25

only be significant for foil rolling, where the magnitude of roll deformation is comparable26

to the gauge, so a deformable mesh added unnecessary complexity for this application.27

The workpiece was defined using C3D8R elements: linear hexahedral contact elements.28
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(a) Undeformed mesh.

(b) Deformed mesh.

Fig. D.1 Example of symmetric rolling mesh used in simulation.

The mesh resolution was scaled with the workpiece thickness, the smallest dimension 1

of the problem, to ensure through thickness resolution was achieved and each element 2

retained an aspect ratio of more than 0.5. The number of elements for each dimension 3

are specified in Table D.1 and Figure D.1 illustrates an example of this mesh, both 4

undeformed and deformed. 5

The workpiece material was unchanged from the material provided as part of the 6

original ABAQUS example. It is defined to have a Young’s modulus of 150GPa, Pois- 7

son’s ratio of 0.3 and a work hardening yield stress defined with eleven experimentally 8

determined data points. The unworked yield stress is 168.2MPa and hardens to a 9

maximum of 448.45MPa. This material simulates the behaviour of C15 steel; a low 10

carbon, low strength work hardening forging steel. 11

This model was generalised for asymmetric rolling by replacing the horizontal 12

symmetry plane with a second roll and making the workpiece full thickness to allow 13

the size, rotation and workpiece-roll friction conditions to be controlled independently 14

from top to bottom. This doubled the elements in the simulation, causing noticeably 15

longer simulation times. The plane termination conditions were also removed as the 16

curvature induced in the workpiece by asymmetry rendered them unusable. Instead 17



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

186 ABAQUS Simulations

Table D.2 Parameters for 2D Asymmetric Rolling

Size (m) Elements
Workpiece thickness 0.01 20-30

Workpiece length 2.0-2.19 2000-3286
Roll radius 0.4-5.3 analytic
Reduction 0.05-0.6 %

Roll surface speed 0.96-1.8ms−1

Friction coefficients 0.08-0.15
Mass scaling 2000

the simulations were run set to twice the duration of any of the symmetric simulations1

observed. Otherwise, the simulation remained unchanged.2

D.1.2 2D Asymmetric Rolling3

More modifications were made to the finite element model for use in validating the4

asymptotic model developed in Chapter 2. To study the effects of each asymmetry, the5

roll gap aspect ratio, the reduction and the magnitude of friction, shorter computation6

times were required. The previous finite element model was reduced to two dimensions7

to achieve this. This also eliminated one more difference of modelling assumptions8

between the simulations and the asymptotic model: specifically, plane-strain; the valid-9

ity of which has been studied elsewhere.JM1 Like the asymmetric three dimensional10

simulations, these simulations were run for a fixed duration: sufficient to roll approxi-11

mately half the work piece in these cases. Given the increased speed of two dimensional12

simulations, this more conservative duration was feasible and provided the opportunity13

for making curvature predictions. CPE4R, linear quadrelateral plane-strain, elements14

were used for these simulations. Table D.2 specifies the parameters, including number15

of elements, defining the set-up and Figure D.2 illustrates an example of the asymmetric16

rolling mesh used, both undeformed and deformed.17

Three different materials were used with this model; two are approximations to18

rigid-perfect plasticity to match the material model used in the asymptotic analysis of19

Chapter 2 and the third having the same hardening curve as the C15 material used20

previously but with lower yield stress. ABAQUS is unable to model rigid-plastic or21

incompressible materials as this leads to under-determined stress states in sub-yield22

areas. Alternatively, the computational problem can be observed by considering the23

1JM: provide citation
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(a) Undeformed mesh.

(b) Undeformed mesh.

Fig. D.2 Example of asymmetric rolling mesh used in simulation.

elastic wave speed, 1

c =
√

E

3ρ (1 − 2ν) 2

where E, ρ and ν are the Young’s modulus, density and Poisson’s ratio respectively. A 3

rigid material can be described as the limit of Young’s modulus tending to infinity and 4

incompressibility as Poisson’s ratio equalling half. Either of these conditions leads to the 5

elastic wave speed tending to infinity which would require an infinitesimally small time 6

step to resolve. Obviously this is impossible and so some compromise is required. The 7

first approximation to rigid-perfect plasticity assumes a Young’s modulus of 200GPa, 8

a Poisson’s ratio of 0.45 and a yield shear stress of 173.2MPa. The Young’s modulus 9

and Poisson’s ratio were chosen to be at the limits of feasible computational times to 10

provide the best possible approximation to rigid plasticity2. The second approximation 11

assumes a Young’s modulus reduced to 100GPa, a Poisson’s ratio reduced to 0.35 and a 12

yield shear stress of 100MPa. Sufficiently similar results to the first approximation were 13

observed with these changes, while the improved computation times made it feasible 14

to run more comprehensive parameter validations. The material density was taken as 15

2Simulations run on an Intel i5 3.4GHz quad-core with 32Gb RAM.
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2700kg/m3, although, the effect of this depends directly on the mass scaling, discussed1

below. The final material, to provide a comparison with a realistic material, has a2

hardening profile based on the material used in the previous models. The yield shear3

stress curve starts at 186MPa and hardens to 496MPa; it is presented in Figure 2.11.4

The Young’s modulus, Poisson’s ratio and material density are assumed to be 180GPa,5

0.27, and 7850kg/m3 respectively.6

One of the key challenges encountered running these simulations was ensuring that7

transients are suppressed quickly to simulate the steady state phase of the process.8

While a mean solution tended to a steady state quickly, a high frequency oscillation9

persisted in many of the time history outputs, particularly roll force and torque. It10

is hypothesised that vertical vibrations in the workpiece, which would have been11

suppressed by the horizontal plane of symmetry in the symmetrical case, caused this.12

Further changes intended to replace the stability provided by this pane of symmetry13

were made.14

First, initialisation was modified so both rolls pinch a stationary workpiece close to15

one end before the rolls begin to rotate. This was to reduce the effect of impact between16

the rolls and workpiece on first contact as the corners of the workpiece produce high17

stresses and strains when contacting the rigid analytic surfaces of the rolls. Further,18

the new initialisation allows vertical inertia of the workpiece to dissipate before rolling19

begins.20

Secondly, greater simulation durations allowed transients to dissipate more com-21

pletely. Increasing simulation durations required longer workpieces, and consequently22

more elements, which meant computation time practically scaled worse than linearly23

with simulation duration.24

Thirdly, smaller mass scalings minimised vibrations. Mass scaling, as the name25

suggests, scales the density of all materials within the simulation. Higher densities26

means slower wave speed, which allows for larger time steps; however, higher densities27

also means more inertial effects including vibrations. Ultimately a mass scaling of 200028

was selected, that is 2000 times the density defined as the material property.29

Two other failure modes were observed with this simulation set-up. Insufficient30

friction or an overly aggressive workpiece reduction meant the rolls could not exert31

sufficient traction to form the workpiece. In the original initialisation, the workpiece32

bounced off the rolls and began to climb the exterior of one of the rolls. In the modified33

initialisation, the rolls slipped entirely and the workpiece remained undeformed after34

the initial squeeze step. This is a physical failure mode and, as predicted by the35
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Table D.3 Parameters for 2D Asymmetric Rolling

Size (m) Elements
Workpiece thickness 0.01 18

Workpiece length 20.0 3600
Roll radius 12.5 analytic
Reduction 0.2 %

Roll surface speed 1.2ms−1

Friction coefficients 0.1

analytical models, would require external forcing to overcome. For this work it was 1

simply considered a failure and these simulations were discarded. 2

The second failure mode was less predictable and non-physical. Large deformation 3

of each element collapsed the mesh in contact with the rolls. High reductions, high 4

frictions and high mass scaling each seem to increase the likelihood of this occurring. It 5

is possible that these simulations could have been recovered by choosing different mass 6

scalings or limiting the time stepping; however, given how infrequently this occurred, 7

these simulations were discarded also. 8

D.1.3 Clad Rolling 9

The simulations were further generalised to model composite workpieces. Independent 10

materials were applied to element sets so the workpiece was comprised of any number of 11

bonded horizontal sheets with different material properties. The meshing was controlled 12

such that a row of nodes would be generated along the interface of bonded sheets. This 13

meant that any element was wholly apart of a single material sheet. 14

The mesh and model dimensions are specified in Table D.3 and an illustrative exam- 15

ple of the mesh is shown in Figure D.3. The second, computationally faster, material 16

without hardening from the asymmetric simulations is used for these simulations: a 17

Young’s modulus of 100GPa, a Poisson’s ratio of 0.35 and a yield shear stress chosen 18

for each independent material, specifically 100MPa for the top material and 65MPa to 19

155Mpa for the bottom material to achieve the desired yield stress ratios. 20

The second significant change from the asymmetric simulations was to use an implicit 21

solver, after a suggestion from Dr. Adam Nagy. This is the ABAQUS/Standard package 22

compared to the ABAQUS/Explicit package. 23

Functionally, explicit solvers use the current system state to determine updates 24

to the geometry and material properties at each time step. ABAQUS/Explicit uses 25
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(a) Undeformed mesh.

(b) Deformed mesh.

Fig. D.3 Example of clad sheet rolling mesh used in simulation.

a central difference scheme and a diagonal lumped mass matrix to achieve this form.1

Implicit solvers use the current and new state of the system to determine the update,2

which requires a matrix inversion at each time step. ABAQUS/Standard uses the3

Hilber-Hughes-Taylor method to form the update and Newton-Raphson method to4

iteratively perform the inversion. Solving the matrix inversion at each time step is5

slower but numerically more stable, so larger time steps can be taken. Implicit solvers6

are generally considered to be slower and do not scale as effectively as explicit solvers7

as the larger time steps do not fully account for the slower solve time at each time step.8

The appropriate choice of solver is dependent on the problem being solved. Implicit9

solvers are more appropriate for static problems with significant residual stresses such10

as cyclic loading, snap through and snap back. Explicit solvers are more appropriate11

for complex and dynamic problems such as impact problems. It is not immediately12

obvious which of these solution methods are more appropriate to simulate rolling but13

it was suggested by Dr. Nagy that if the spring back and residual stresses observed in14

the explicit simulations were significant then an implicit solver would capture these15

more accurate. This would be particularly relevant for curvature prediction.16
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A weak, 1Nm−1, spring was attached to one of the central nodes on the trailing edge 1

of the workpiece. This improves conditioning for the implicit solver with a negligible 2

effect on the results. 3

In addition to using an implicit solver, three more techniques were suggested by Dr. 4

Nagy to further minimise transient oscillations observed in the explicit asymmetric 5

simulations. First, static time steps neglect inertia in the solution process, which 6

quickly dissipates waves that may be caused by shocks or other start up effects. Second, 7

pressure over-closure provides a continuous relationship between the normal surface 8

force and the distance between the contact surfaces, which prevents discontinuities 9

when contact first occurs. Exponential pressure over-closure was used here. Finally, 10

smooth displacement and velocity transitions prevent infinite accelerations and the 11

associated forces. While this is most relevant for explicit solvers as implicit solvers 12

handle these discontinuities well, it was included regardless. These were applied to the 13

roll displacement, when the workpiece is initially squeezed, and to the roll rotational 14

velocity, when the rolls begin to rotate and accelerate the workpiece. This new analysis 15

successfully eliminated the unwanted oscillations in all the observed cases. 16

D.1.4 Ring Rolling 17

The final finite element model developed was of a simple ring rolling configuration: a 18

work roll, mandrel and workpiece without axial or guide rolls. Like the previous two 19

simulations, the rolls initially close on a segment of the workpiece before they begin 20

rotating. The same plane-strain workpiece elements, analytic roll surfaces and contact 21

definitions are all used. 22

Although the design decisions made are mostly the same as the previous simulations, 23

the scripting used is substantially different. The ABAQUS Python API was used 24

to construct the model within ABAQUS CAE from which the input file was saved, 25

as opposed to generating the input files directly from Python as a text file. The 26

complexity of defining the nodes and elements of a circular workpiece made this 27

approach favourable and it transpired that ABAQUS records the actions of a CAE 28

session as Python commands in an ‘abaqus.rpy’ file. This can be examined for prompts 29

of appropriate ABAQUS Python API commands to use in a script. 30

The inner and outer edge of the workpiece are seeded with a fixed number of nodes 31

each so that the auto generated mesh is regular with annular sectors. An example of 32

the mesh is shown in Figure D.4. 33
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(a) Undeformed mesh.

(b) Deformed mesh.

Fig. D.4 Example of the ring rolling mesh used in simulation.

A configuration that converges using the ABAQUS/Standard , implicit, solver could1

not be found so the ABAQUS/Explicit solver was used for these simulations. The2

second, computationally faster, perfectly plastic material without hardening from the3

asymmetric simulations and clad sheet simulations is used again here.4

Without guide rolls, the stability of the physical process is poor. Further, without5

active control of the work rolls, a rolling process which maintains a circular and6

uniformly thick workpiece is impossible. Configurations that remain sufficiently circular7

for sufficiently long were used to gain qualitative and quantitative insight about the8

process. This had limited success so more components or a more sophisticated control9

mechanism could provide useful validation to progress the ring rolling model presented10

in Chapter 6.11

D.2 Mesh Convergence12

Mesh convergence studies have been conducted on the simulation models described in13

the previous sections. The results of these studies are presented in Figures D.5 to D.714

where the relative error of the roll force and torque is plotted against the element size.15
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Fig. D.5 Convergence study for the explicit, three dimensional asymmetric rolling finite
element model.

The results from a simulation with finer meshing than those included in the plots was 1

used to calculate the relative error. An experimental or analytical solution would have 2

been preferred but no such data are available for the desired configurations. 3

The implicitly solved simulations show much less variation from a linear convergence 4

than both explicit solutions. It is hypothesised that the undamped transients, causing 5

high frequency oscillations in the solutions, are the cause of this variation. This and 6

measures to limit the impact are discussed in the previous section and summarised in 7

Appendix D.4. Regardless of these transients, a convergent trend is observed and the 8

errors remain of comparable size to the implicit solution. 9

Early termination of finely meshed models was observed for the implicit solver 10

and refining the meshes further resulted in fewer increments being completed. This 11

may be a memory throttling mechanism of ABAQUS/Standard and so more advanced 12

configuration of the software may reveal a solution; however, sufficient accuracy was 13

achieved so this was not investigated further. 14

Finer meshed models of course require greater computational time so the final 15

choice of mesh resolution was a compromise between accuracy and computational cost. 16
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Fig. D.6 Convergence study for the explicit, two dimensional asymmetric rolling finite
element model used in Chapter 2. The discretisation used for the varying asymmetries
study and non-dimensional parameters study are marked as vertical long dashed and
short dashed lines respectively.
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Fig. D.7 Convergence studies for the implicit, clad sheet rolling finite element model
used in Chapter 3. The discretisation used for the study in that chapter is marked
with a dashed line.
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The resolutions used for parameteric studies throughout this work have been marked1

as vertical black lines on the appropriate figures.2

D.3 Post Processing3

ABAQUS simulation results are stored in database files, ‘.odb’ files, which can be4

accessed through the ABAQUS CAE graphical user interface or using the Python API5

provided by ABAQUS . The former was used to generate the images of deformed and6

undeformed meshes in Appendix D.1 and the latter for batch post-processing of the7

results presented throughout this document. As part of post-processing, calculations8

are mode of the roll force and torque; surface and interfacial stresses; effective friction9

coefficients; neutral point locations; curvature; curvature approximations; and stress10

and strain fields. A description of each follow.11

Roll Force and Torque Roll force and torque values are determined as the force and12

torque acting on the control node for each roll. The simulations were configured13

to record these values at every increment of the simulation. An average over the14

final .5 seconds of simulation time is taken to estimate the steady state of these15

values as only the vibrational transients discussed previously remained in this16

time period.17

Surface/Interfacial Stresses and Relative Slip The simulations were configured18

to save velocity data, stress data and surface stress data at twenty points during19

the rolling step. A path, defined by a list of edge nodes, is constructed along the20

roll-workpiece surfaces and material interfaces, if any exist. Values for the saved21

data can be generated along this path and saved with the associated position22

along the path. The relative slip is simply the workpiece surface speed along this23

path less the roll surface speed.24

Effective Friction Coefficients The local Coulomb friction coefficient is determined25

by dividing the normal force with the roll shear at any point. Similarly, the local26

relative slip coefficient or local friction factor coefficient is determined by dividing27

the normal force with the relative slip or yield stress respectively. An average of28

these local coefficients is taken over the workpiece surface in contact with the29

roll for the effective friction coefficients.30
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Neutral Points The neutral points are taken to be where no relative slip occurs. 1

Often this is a region, not a single point, and checks to discard regions of no-slip 2

at the entry or exit are also performed. 3

Curvature Prediction The middle nine-tenths of the nodes that have completely 4

undergone rolling are used to calculate curvature. This is to eliminate leading 5

edge transients and regions around the exit of the roll gap in which residual 6

stresses may not have been relaxed. The curvature of each row of nodes is 7

calculated using a circle that is fitted by least squares. The workpiece curvature 8

is taken as the average of these curvatures. Although computationally slow, this 9

approach produces values that are robust to through thickness variation and 10

inclusion of limited end transients. 11

Stress and Strain Fields Field data, including position, is calculated for each node. 12

Displacements are defined on nodes so can be read directly. Velocities can also 13

be read directly for ABAQUS/Explicit simulations but must be calculated from 14

the displacement change between the final two frames for ABAQUS/Standard 15

simulations. The position of each node is calculated from its initial position plus 16

its displacement. Finally, stresses are defined on elements so the stress state at a 17

node must be computed by averaging the stress state of each element the node is 18

a vertex of. 19

D.4 Transients Control 20

As discussed in Appendix D.1, minimising the contribution to the solution by transient 21

effects was a major consideration of the finite element models. The techniques employed 22

to limit these effects are summarised here for reference. 23

Mass Scaling The maximum convergent time increment for explicit solvers is pro- 24

portional to the minimum element size and inversly proportional to the wave 25

speed of the medium. Increasing the material density decreases the wave speed 26

and allows larger time steps to be taken. Mass scaling uniformly scales the 27

density of every material within the simulation to facilitate longer time steps 28

and, hence, reduce computational time. Mass scalings also increases inertia so 29

must be kept sufficiently small for this not to influence the result of interest. 30

One way of determining the significance of inertia is to compare the kinetic and 31
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internal energies over time; the kinetic energy should be small throughout the1

simulation. In the current application, higher mass scalings did not affect the2

averaged force and torque predictions; however, oscillation in these values and3

oscillating residual stresses grew in magnitude with greater mass scaling and4

were minimal when no mass scaling was used.5

Simulation Duration Simply increasing the simulation duration allows more tran-6

sients to pass before considering the result as steady state. While the simulation7

duration is linearly related to the computation time, longer simulations form more8

of the workpiece so a longer workpiece is required to accommodate this. This9

increases the complexity of every time increment so ultimately the computational10

time scales worse than linearly with simulation duraiton. It was also observed11

that oscillatoins would not necessarily dissipate quickly enought to make longer12

durations a feasible appraoch to eliminating transients.13

Static Time Stepping Static time steps, an option for simulation steps in ABAQUS14

, neglect inertia in the finite element calculations. This eliminates the dynamic15

component of oscillations and produces very strong damping of shocks and initial16

transients.17

Pressure Over-closure Pressure over-closure smooths the relationship between the18

normal contact pressure and clearance distance of the contact surfaces. This19

eliminates the discontinuity at initial contact which can lead to shocks within20

the system. An exponential over-closure relationship was used in this work but21

others are available.22

Smooth Amplitude Transitions Using smooth displacement or velocity profiles23

can prevent discontinuities in velocity which produce infinite accelerations, and24

hence forces. Smooth transitions were employed to reduce shocks when the rolls25

squeeze the workpiece and when the rolls begin to rotate.26

Aritificial damping Artificial damping can be incorporated into ABAQUS in serveral27

ways depending on the solver being used. While it was not explored for these28

models it could be used to reduce the simulation required to achieve steady state.29



Draft - v1.0 Sunday 23rd July, 2017 – 11:14

D.5 Friction Behaviour 199

0.0

200.0

400.0

P
re

ss
u

re
(M

P
a
)

-25.0

0.0

25.0

S
h

ea
r

(M
P

a
)

-10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0

Distance through Roll Gap (mm)

-0.2

0.0

R
el

at
iv

e
S

li
p

(m
m

s−
1
)

Top Roll

Bottom Roll

Fig. D.8 Surface normal stress (top), tangential stress (middle) and relative slip (bottom)
throughout the roll gap for an example asymmetric simulation.

D.5 Friction Behaviour 1

It is specified in the ABAQUS users manual (Dassault Systemes, 2012d) that Coulomb 2

friction is available by default for simulations and hence used here. Figure D.8 shows 3

that this is not the case in regions around the neutral point, marked roughly in the 4

figure by the vertical dashed lines, as the normal stress is at a maximum but the 5

magnitude of shear reduces smoothly around the change of shear direction. The final 6

plot in Figure D.8 shows that these smooth transitions coincide with regions of no-slip. 7

Figure D.9 illustrates the departure from Coulomb friction more clearly by plotting 8

the roll surface shear stress against the roll surface pressure. The dashed lines in the 9

first plot are the in Figure D.9 denote the Coulomb friction relationship between for 10

the top and bottom rolls. Clearly the points above 300MPa pressure depart from this 11

relationship. Plotting the roll surface shear stress against the relative slip shows that 12

these points coincide with a region of no-slip, as observed in the last plot of Figure D.9 13

around the dashed vertical line. 14
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Fig. D.9 Surface tangential stress against surface normal stress (top) and relative slip
(bottom) for an example asymmetric simulation.

This suggests that an alternative friction model is used for sticking contact; however,1

it is not clear what this alternative model might be. It is possible it is designed to smooth2

discontinuities that would otherwise occur, like the analytical solutions presented in3

Chapter 2 or Chapter 3, or that some other phenomenon, perhaps associated with4

elasticity, is influencing the surface shear.5
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