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Abstract

An analytical model for asymmetric rolling is presented, which includes asym-
metry in roll friction, roll size and roll speed, for a rigid, perfectly-plastic thin
sheet deformed with Coulomb friction. This model is solved asymptotically,
based on the systematic assumptions that both the roll gap aspect ratio and
the friction coefficient are small. While the leading order solution is shown
to be consistent with an existing slab model, we are able to derive additional
detail by looking to higher orders. We compare our higher order solution
and the leading order solution with finite element simulations, and use the
results to determine the practical range of validity of our analytical model.
Within this region, it gives reasonable quantitative predictions of the force
and torque results from finite element simulations and approximates through
thickness variation of stress and strain with orders of magnitude shorter com-
putation times. A MATLAB implementation of this solution is included in
the supplementary material.

Keywords: thin sheet rolling, asymmetric rolling, asymptotic analysis,
analytical model, 2D FEM validation

1. Introduction

Rolling is the process of reducing the thickness of a metal workpiece by
passing it between two rotating rolls with separation less than the current
workpiece thickness. This processes is used to produce sheet metal and other
products.
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Asymmetry in rolling can arise through inequality in roll radii, roll veloc-
ity and interface friction; inhomogeneous or anisotropic workpiece material;
or bending end forces. Regardless of the mechanism, asymmetry generally
results in curvature of the rolled workpiece. If this is unintentional, perhaps a
consequence of tool wear, it can cause compatibility difficulties and machine
damage. Intentional asymmetry can be used to reduce the total roll torque
and force required to achieve a given reduction and can provide flexibility in
machine design.

The mechanical simplicity of driving only a single roll first motivated
investigations into asymmetric rolling but it continues to be an active area of
research for other reasons. In addition to process efficiency gains, improved
workpiece quality and reduced maintenance requirements; curvature can also
be desirable if controlled to produce a wider range of products.

Given these attractions, improving online control of asymmetric rolling
is an area of interest. For use in control, solution times should not slow the
processes when included in the control loop. This prohibits the use of finite
element simulations and motivates research into faster, yet still accurate,
analytical models.

Early experimentation has been used to quantify roll force and torque for
a range of geometries and materials [3, 22]. A variety of techniques have also
been used to investigate other properties such as contact stress distributions
and workpiece curvature [17, 1, 10].

Analytical work has included a range of approaches; the most popular
being a modifying symmetric rolling one-dimensional ‘slab’ models. These
models are constructed without systematic consideration of the physical sys-
tem so the subsequent assumptions remain questionable. This seems particu-
larly relevant for recent works [21, 26, 25, 11, 9] which extend models such as
Hwang and Tzou [13] to capture greater asymmetry and predict curvature.

Alternatives techniques have also included upper-bound methods [18, 12]
and slip-line methods [7, 5]. While both are able to predict characteristics
such as curvature, the roll contact points or the yield region, the solution
processes require a priori knowledge or assumptions about the form of the
solution. This hinders the development of these models for other geometries
and materials, therefore they have seen less attention in recent work.

Finite element simulations have also been applied to provide detailed re-
sults for more general configurations. Most studies focus on predictions of
roll force, roll torque, and workpiece curvature [27, 24, 20] with some more
recent studies considering microstructure [23]. While impractical for online

2



control, this approach can be used to gain understanding of the processes
and facilitate inexpensive exploration of configurations. The results of these
publications have also been used to validate some of the previous analyt-
ical models. Understanding the operating limits of a model could also be
ascertained by running simulations tailored to the model in question.

Another technique has also been used in modelling symmetric rolling:
asymptotic analysis. Asymptotic analysis exploits systematic assumptions
of scale to find a rigorous yet tractable approximation, as opposed to sim-
plifications through ad-hoc assumptions of unknown error and limitation. A
series of publications [28, 16, 8, 4, 2] develop models of rolling underpinned
by an assumption of a small roll gap aspect ratio: the sheet is much thinner
than the length of the roll gap. Without breaking this assumption a range
of geometries, friction models and material models have been implemented.

This technique has only been applied to asymmetric rolling by Johnson
[15] where asymmetries were only considered for the friction coefficients and
roll speeds. The friction coefficient was assumed to be an order of magnitude
larger than the roll gap aspect ratio which is not representative of many
thin sheet processes which are predominantly cold rolling. Experiments [17]
and simulations [19, 20] also show the sign of curvature can be dependent
on geometry indicating that specific account of roll size may be necessary to
capture the complete dynamics of the process.

In the interest of developing analytical models with sufficient resolution
to potentially make curvature and microsctructure predictions, the present
work develops an asymptotic model to explicitly include asymmetric roll size
with asymmetric roll speed and asymmetric, small magnitude friction. Com-
plete stress and strain fields are achieved with this approach. In Section 2
we present a model of asymmetric rolling assuming a rigid, perfectly-plastic
workpiece and roll-workpiece interaction driven by slipping Coulomb fric-
tion. The choice of material and friction models are for illustration only; by
analogy, a solution could be found for any of the friction or material models
in the literature [28, 16, 8, 4, 2]. This model is non-dimensionalised to find
six non-dimensional groups: the aspect ratio, δ, and the friction coefficient
µ, which are assumed to be small; the sheet reduction r; and the ratios of
roll size, speed and friction, which are considered unrestricted. An asymp-
totic solution to this model comprises Section 3, and the model is validated
against the explicit solver of the commercial finite element package ABAQUS
through a range of asymmetries and parameters in Section 5.
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2. Model Formulation

We assume a plane strain configuration, which is valid away from the
workpiece edges for sufficiently wide workpieces. Hence, Figure 1 captures
the extent of the model.

The rolls are vertically aligned and the workpiece is fed horizontally. The
initial workpiece half thickness is ĥ0 and the length of the roll gap is l̂, giving
the aspect ratio as δ = ĥ0/l̂ where δ is assumed to be small. This is most
appropriate when considering a thin sheet with large or flattened working
rolls.

The material model is assumed rigid perfectly-plastic; that is, no elasticity
and no hardening. We assume that plastic deformation occurs everywhere in
the roll gap and adopts vertical boundaries at the entry and exit (marked as
the hashed region in Figure 1). This assumption is typical of existing ‘slab’
and asymptotic models of rolling.

Figure 1: Illustration of the idealised two dimensional rolling model.

Although assuming vertical boundaries to the plastic region imposes very
specific combinations of bending and shear end conditions for a given asym-
metry, it has been shown experimentally that the bending effects from non-
extreme end conditions can be neglected [26].
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The von Mises yield criteria and associated flow rule, the Levy-Mises
equations, are used and slipping Coulomb friction describes the roll-workpiece
interaction like Domanti and McElwain [8]. Unlike Domanti and McElwain
[8], rather like the first model of Cherukuri et al. [4], the friction coefficient
is also assumed to be small, µ � 1. Asymmetry is introduced into the
friction coefficient, µ; roll radius, R̂; and rotational speeds, Ω̂, which must
all be defined for the top, subscripted t, and bottom, subscripted b, rolls
separately. These assumptions are valid for foil rolling, but may also be valid
in other regimes that fall within these assumptions.

The velocity on the roll surfaces is restricted by the no-penetration condi-
tion. Horizontal and vertical force equilibria on the roll surfaces are combined
with the Coulomb friction model to give the shear boundary condition on the
top and bottom roll. The model is closed by applying a given force at each
end of the roll gap.

Using carets to denote dimensional quantitites, we can define p̂, ŝij, û,

v̂, λ̂ and k̂ as the pressure, ijth deviatoric stress, horizontal velocity, vertical
velocity, flow parameter and yield stress respectively. Also, ĥt/b(x̂) is the

roll surface, applicable to both top and bottom rolls and F̂in/out are the end
tensions, per unit width, applied to the workpiece, applicable to the upstream
and downstream workpiece.

We define the upstream velocity of the workpiece as û0, although it is not
possible to specify it independently of the two roll velocities. Consequently,
we shall consider û0 to be the characteristic velocity for the purpose of non-
dimensionalisation then determine it’s value from the roll velocities.

2.1. Non-Dimensionalisation

We scale vertical distances with the initial workpiece half thickness, ĥ0,
and horizontal distances with the length of the roll gap, l̂. The aspect ratio,
δ = ĥ0/l̂, is assumed to be small. As the friction is also small, µt/b = O(δ),
we define a normalised friction coefficient, β = µb/δ = O(1) such that δ is
the sole small parameter.

Using the scaling choice of Cherukuri et al. [4], the shear stress scales
with the friction coefficient and yield stress, ŝxy = δβk̂sxy. Alternative scal-

ing choices have been presented, such as ŝxy = βk̂sxy from Domanti and
McElwain [8], however, these require end compression which is not usually
found in practice.

Scalings for longitudinal stress is chosen by considering the yield condition
and for pressure by considering the horizontal force balance: longitudinal
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stress is to be scaled with the yield stress, ŝxx = k̂sxx and pressure is to be
scaled with the characteristic shear acting over the length of the roll gap,
p̂ = (ŝxy0/δ)p.

Velocities can be scaled by the upstream workpiece velocity, û = û0u and
v̂ = δû0v, although this value must be determined from the roll velocities as
discussed in the previous section.

Finally, the scaling for the flow rate can be determined by balancing the
horizontal flow equation to give λ̂ = λ û0

k̂l̂
.

Armed with these definitions,

x̂ = ĥ0x ĥ = ĥ0h ŷ = l̂y

ŝxx = k̂sxx ŝxy = δβk̂sxy p̂ = βk̂p (1)

û = û0u v̂ = δû0v λ̂ = λ
û0

k̂l̂
,

we are now able to determine the non-dimensional governing equations,

−β ∂p
∂x

+
∂sxx
∂x

+ β
∂sxy
∂y

= 0 (2)

−β ∂p
∂y
− ∂sxx

∂y
+ δ2β

∂sxy
∂x

= 0 (3)

∂u

∂x
= λsxx (4)

∂u

∂y
+ δ2

∂v

∂x
= 2δ2βλsxy (5)

∂u

∂x
+
∂v

∂y
= 0 (6)

s2xx + δ2β2s2xy = 1, (7)

using, as a consequence of plane strain, −sxx in favour of syy.
Similarly, the velocity boundary conditions are

v(x, ht) = u(x, ht)
dht
dx

, (8a)

v(x, hb) = u(x, hb)
dhb
dx

. (8b)
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The shear boundary conditions can be simplified by observing that the roll
surface speed remains constant while the workpiece surface speed increases
throughout the roll gap. This can be deduced by considering a plug-like flow
and is verified by the velocity solution in the next section. The locations
where the roll surface speed equals the workpiece speed are called neutral
points. Coulomb friction forces can hence be more simply considered constant
in three regions; 0 < x < min(xnb, xnt), min(xnb, xnt) < x < max(xnb, xnt)
and max(xnb, xnt) < x < 1 where xnt and xnb are the top and bottom neutral
points.

Hence, in addition to non-dimensionalising with the bottom roll friction
coefficient, the friction coefficients are defined piecewise to eliminate the sur-
face slip from the problem formulation,

γt =

{ µt
µb

: x < xnt
−µt
µb

: x > xnt
and γb =

{
−1 : x < xnb
1 : x > xnb

. (9)

This allows the shear boundary conditions to be expressed as

sxy(x, ht) = γt (βp(x, ht) + sxx(x, ht)) +
2

β
sxx(x, ht)

dht
dx

+ δ2

[
2βγtsxy(x, ht)

dht
dx

+ 2βγtp(x, ht)

(
dht
dx

)2

(10a)

+
2

β
sxx(x, ht)

(
dht
dx

)3
]

+O
(
δ3
)

and

sxy(x, hb) = γb (βp(x, hb) + sxx(x, hb)) +
2

β
sxx(x, hb)

dhb
dx

+ δ2

[
2βγbsxy(x, hb)

dhb
dx

+ 2βγbp(x, hb)

(
dhb
dx

)2

(10b)

+
2

β
sxx(x, hb)

(
dhb
dx

)3
]

+O
(
δ3
)
.

The end force and velocity conditions can also be non-dimensionalised to

Fin/out =

∫ ht

hb

−βp+ sxxdy, (11)
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where F̂in/out = Fin/out

(
ĥt − ĥb

)
k̂, and

2 =

∫ ht(0)

hb(0)

u(0, y)dy. (12)

It is also useful to define the workpiece height throughout the roll gap,
∆h(x) = ht(x)−hb(x), and the total roll friction acting to draw the workpiece
through the roll gap, ∆γ = γt(x)− γb(x).

3. Solution

We seek a perturbation expansion in δ for each of the variables, u, v, sij,
p and λ of the form

A(x, y) = A(0)(x, y) + δA(1)(x, y) + δ2A(2)(x, y) +O(δ2). (13)

Assuming δ is sufficiently small, powers of δ are considered orthogonal so like
terms are collected and solved successively, starting from low orders of δ.

Leading order solution
Neglecting all terms of O(δ) or higher, the governing equations are re-

duced to

−β∂p
(0)

∂x
+
∂s

(0)
xx

∂x
+ β

∂s
(0)
xy

∂y
= 0, (14)

−β∂p
(0)

∂y
− ∂s

(0)
xx

∂y
= 0, (15)

∂u(0)

∂x
= λ(0)s(0)xx , (16)

∂u(0)

∂y
= 0, (17)

∂u(0)

∂x
+
∂v(0)

∂y
= 0, (18)

and s(0)2xx = 1, (19)

with boundary conditions

s(0)xy (x, ht(x)) = γt
(
βp(0)(x, ht) + s(0)xx

)
+

2

β
s(0)xx (x, ht)

dht
dx

, (20a)

s(0)xy (x, hb(x)) = γb
(
βp(0)(x, hb) + s(0)xx

)
+

2

β
s(0)xx (x, hb)

dhb
dx

, (20b)
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v(0)(x, ht(x)) =
dht(x)

dx
u(0)(x, ht(x)), (21a)

v(0)(x, hb(x)) =
dhb(x)

dx
u(0)(x, hb(x)), (21b)

∫ ht(0)

hb(0)

−βp(0)(0, y) + s(0)xx (0, y)dy = Fin, (22a)∫ ht(1)

hb(1)

−βp(0)(1, y) + s(0)xx (1, y)dy = Fout, (22b)

and

∫ ht(x)

hb(x)

u(0)(x, y)dy = 2. (23)

Equation (17) indicates that the leading order horizontal velocity is verti-
cally homogeneous so the application of conservation of mass to every vertical
slice of the workpiece results in

u(0) =
2

∆h(x)
. (24)

Equation (19) can be solved to give s
(0)
xx = ±1 = −s(0)yy .

s
(0)
yy = −1 is chosen to ensure the rolls remain in compression when

p(0) < 1/β. Hence,
s(0)xx = −s(0)yy = 1. (25)

Substituting these results into (16), we obtain

λ(0) =
1

s
(0)
xx

du(0)

dx
= − 2

∆h2
d∆h

dx
. (26)

then integrating (18) and using boundary condition (21) gives

v(0) = −
∫ ht(x)

hb(x)

du(0)

dx
dy =

2

∆h2

(
ht
dhb
dx
− hb

dht
dx

+ y
d∆h

dx

)
. (27)
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Equation (15) shows that the pressure is homogeneous through thickness,
hence applying the stress results to (14) gives

s(0)xy =
dp(0)

dx
y +K(x). (28a)

Applying this at y = ht or y = hb and comparing to the boundary shear gives
the general forms

dp(0)

dx
=
s
(0)
xy (x, ht(x))− s(0)xy (x, hb(x))

ht(x)− hb(x)
, (28b)

K(x) =
ht(x)s

(0)
xy (x, hb(x))− hb(x)s

(0)
xy (x, ht(x))

ht(x)− hb(x)
. (28c)

The Coulomb boundary conditions (20) applied to (28b) produces the
differential equation for pressure,

dp(0)

dx
=

1

∆h(x)

(
∆γ(x)

(
βp(0) + 1

)
+

2

β

d∆h(x)

dx

)
. (29)

The pressure at the entrance and exit can be determined from the work-
piece force end conditions (22),

p(0)(0) =
1

β

(
s(0)xx (0)− Fin

∆h(0)

)
, p(0)(1) =

1

β

(
s(0)xx (1)− Fout

∆h(1)

)
. (30)

This defines two boundary conditions for the ODE (29). However, the
discontinuous nature of ∆γ means that (29) must be solved in three sections,
as shown in Figure 2: the entrance region (0 < x < min(xnb, xnt)); between
the neutral points (min(xnb, xnt) < x < max(xnb, xnt)); and the exit region
(max(xnb, xnt) < x < 1). The locations of these neutral points, xnt and xnb,
are not known a priori, and must be determined as part of the solution.

xnt and xnb are the locations where, by definition, the surface velocity
equals the roll velocity. The pressure, p(0), must be continuous at these
locations.

Hence, the middle piece of the pressure curve is determined by joining
the outer two curves such that the neutral point locations satisfy the correct
roll speed ratio; the magnitude of the values are satisfied by the choice of
characteristic velocity, û0. This is analogous to choosing the constant of
integration marked in panel (c) of Figure 2.
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Figure 2: A schematic of the rolling process marking the differences in roll velocity and
neutral points (a); a plot of the characteristic surface velocity curve (b); and a plot of the
characteristic pressure with alternative, discontinuous, curves as dashed lines (c).

Once (28b) and (28c) have been solved for p(0) and K(x), substitution
reveals the shear stress to be

s(0)xy (x, y) =
βp(0)(x) + 1

∆h(x)
(∆γ(x)y + (ht(x)γb(x)− hb(x)γt(x)))

+
2

β∆h(x)

(
d∆h(x)

dx
y +

(
ht
dhb
dx
− hb

dht
dx

))
, (31)

which completes the leading order solution.

3.1. Comparison with Hwang and Tzou [13]

Extracting the surface pressure and shear from this leading order solution
is equivalent to employing a ‘slab’ model. In fact, this particular solution is
equivalent to (10) in Hwang and Tzou [13] if we assume the reduction is
small. Hwang and Tzou [13] approximates the horizontal coordinate with
an expansion of the tangent function, x = tan (ω) ' ω + ω3/3, to solve
much of this in closed form, reducing the neutral point search to numerically
inverting an algebraic equation instead of iteratively solving (29). However,
this approximation is only valid in the limit of small reductions, whereas our
method supports an arbitrary reduction.
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Although this agreement validates the assumptions made in Hwang and
Tzou [13], the rigour of the present approach is still beneficial as the as-
sumptions are made more explicit and hence the limits are easier to test.
For example, neglecting the shear stress contributions in the yield criterion
at leading order is a consequence of assuming small friction coefficients so
we can, in principle, determine the range of friction coefficients for which
accurate predictions can be made.

3.2. Correction Terms

The same solution process can be applied iteratively to solve for terms
with increasing order of δ. The absence of O(δ) terms in the governing equa-
tions or boundary conditions mean that this order is solved to be identically
zero. This suggests why the existing slab models have been generally suc-
cessful; given their ad-hoc assumptions are correct, they achieve accuracy up
to terms of O(δ2).

Further accuracy can still be achieved with the systematic approach pre-
sented here by repeating this process for terms of O(δ2). The correction
terms increase the accuracy of the through-thickness solution. In practice
each variable raises an order as a polynomial in y with each correction. Hor-
izontal velocity, pressure, longitudinal deviatoric stresses and the flow pa-
rameter become quadratic in y and vertical velocity and shear stress become
cubic. Velocity also becomes dependent on the stress distribution, therefore
material properties and frictional effects affect the strain field.

For brevity, the derivation of this correction has been relegated to Ap-
pendix A and a MATLAB implementation is included in the supplementary
material.

4. Numerical Simulations

Numerical simulations were used to validate the presented model. The
commercial finite element package ABAQUS was used with the input mod-
ified from the explicit two dimensional rolling model presented in section
1.3.11 of the ‘ABAQUS Example Problems Manual’ [6]. Symmetry was bro-
ken with the addition of a second roll and the initialisation was modified
to have the rolls close onto a stationary workpiece instead of feeding the
workpiece into the roll gap with a non-zero initial velocity.

The first simulation set was run with a material close to rigid-perfect
plastic for numerical results as close to the asymptotic modelling assumptions
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Table 1: Default Parameter Sets for Varying Non-dimensional Parameters

Name (µb, δ, r) µt/µb R̂t/R̂b Ût/Ûb
Symmetric (0.1, 0.1, 0.25) 1.0 1.0 1.0
Friction (0.1, 0.1, 0.25) 0.9 1.0 1.0
Size (0.1, 0.1, 0.25) 1.0 0.9 1.0
Speed (0.1, 0.1, 0.25) 1.0 1.0 0.95
Combo 1 (0.1, 0.1, 0.25) 1.0 0.95 0.95
Combo 2 (0.1, 0.1, 0.25) 0.9 1.1 0.95

as possible. The yield stress in shear was set to 173MPa with no hardening
effects. As ABAQUS requires some amount of elastic behaviour, the elastic
modulus and Poisson’s ratio were set as high as stable computation would
allow: 200GPa and 0.45 respectively in this case.

The symmetric base case was a 10mm strip thinned by 12% with 2.5m
radius rolls; this roll size is realistic when approximating curvature of rolls
flattened in thin sheet rolling. The friction coefficients were taken to be 0.1
and roll surface velocities of 1.2ms−1. This gave non-dimensional values δ, r
and µ, of 0.091, 0.12 and 0.1 respectively.

Given these base values, the top roll was then altered to vary the ratio
of the top and bottom friction coefficient, surface speed and roll size. It is
worth noting that δ varied with the roll size as the workpiece thickness was
held constant.

A second set of simulations was made to observe the performance over a
range of parameters: specifically, varying the friction magnitude, aspect ratio
and reduction. One dimensionless parameter was varied while the others
were held constant. Note that this means two geometric parameters may
vary simultaniously; for example, the roll size was reduced as the reduction
was increased to ensure the aspect ratio remained constant. Six different sets
of initial parameters, as specified in Table 1, were used.

The lower roll surface speed, initial half thickness and yield stress were
1.2ms−1, 0.005m and 100MPa respectively. The material used in these sim-
ulations was further from perfect plasticity than the previous example. This
reflects a more realistic material: Poisson’s ratio of 0.35 and elastic modulus
of 100 GPa.
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5. Results and Discussion

In this section, we present the comparison between the numerical sim-
ulations and asymptotic model for varying asymmetries and several cross
sections of non-dimensional parameters.

5.1. Numerical Comparison over Varying Asymmetries

Results from the leading order asymptotic solution, our second order
corrected asymptotic solution and numerical simulations for the first set of
simulations described in Section 4 are presented in Figure 3.
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Figure 3: Roll force (top) and torque (bottom) as the top roll is adjusted to vary the ratio
of roll characteristics: friction (left), speed (middle) and size (right). The other parameters

used are (ĥ0, R̂b, r, µ, k̂) = (0.01m,2.5m, 0.12, 0.1, 173MPa).
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The trends of the roll force and torque as each ratio is varied are cap-
tured well by the asymptotic solution. The median error was 0.85MN and
0.007MNm for the force and torque respectively with maximum errors of
2.25MN and 0.28MNm occurring for asymmetric speeds where the magni-
tudes vary the most. Considering characteristic force and torque values of
25MN and 1.0MNm, these median values correspond to less than 3.5% er-
ror. There is also minimal difference between the leading order and corrected
asymptotic solutions.

The discrepancies in this comparison can most likely be attributed to the
elastic effects, which are neglected in the asymptotic model but incorporated
in the simulations.

The most phenomenologically interesting trend in both cases is the drop
in force and transition in direction of torque as the roll speed ratio varies.
Figure 4 makes it clear that this trend stems from the movement of the
neutral points from one side of the roll gap to the other.

Furthermore, an important consequence of elasticity is that a region of
sticking often occurs between the roll and workpiece. In this region the shear
stress smoothly changes direction and the workpiece drops below yield. The
error bars in Figure 4 indicate the extent of this sticking region and the
mid-point marked as the neutral point.

Figure 4 shows that the plateaus in force and torque occur as the neutral
point reaches the end of the roll gap. The asymptotic solution predicted the
location of the neutral point in all experiments with similar accuracy to that
observed in Figure 4, although the neutral point varies little while varying
friction or roll size.

In the case of large roll speed asymmetry, when a roll is entirely slipping
as one of the neutral points reaches an end of the roll gap, the assumption of
Coulomb friction means that any further speed asymmetry will not affect the
neutral points. The speed of the process, expressed by the velocity scaling,
is then entirely controlled by the non-slipping roll. In finite element sim-
ulations, elastic effects mean both roll speeds remain important until both
neutral points have reached opposite ends of the roll gap. This explains the
inaccuracy in Figure 4.

5.2. Numerical Comparison over Varying Non-dimensional Parameters

The roll force, roll torque and neutral point for ‘Combo 2’ of the second
set of simulations are presented in Figure 5. The remaining five parameter
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Ûb

0.6 0.8 1.0 1.2 1.4 1.6
−0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06

x
N

(m
)

Top Roll
Bottom Roll

Simulated Solution
Asymptotic Solution

Figure 4: Roll torque (top) and neutral point (bottom) as the top roll speed is varied for
the ‘perfectly plastic’ material. Error bars indicate the finite length of sticking between the
rolls and workpiece. The other parameters used are (ĥ0, R̂b, Ûb, r, µ, k̂) = (0.01m,2.5m,
1.2ms−1, 0.12, 0.1, 173MPa). Error bars indicate the finite length of sticking between the
rolls and workpiece.

sets in Table 1, which exhibit very similar trends, are illustrated by way of
absolute error for roll force and torque in Figure 6.

When δ exceeded 0.3, the finite element simulations failed to reach a
steady state solution as the rolls slipped without deforming the workpiece.
This seems to be reflected in the asymptotic model as both boundary condi-
tions cannot be satisfied with pressure continuity.

For larger friction coefficients, (typically µb ≥ 0.3), the asymptotic so-
lution breaks down: terms begin to ‘jump order’. That is, correction terms
become as large as leading order terms, which is a clear sign that the premise
of separating orders in the perturbation expansion is incorrect. This is unsur-
prising considering the violation of the assumption that the friction coefficient
and aspect ratio are of similar size.

Within the presented parameter range, however, the asymptotic solutions
behave as one would intuitively expect and capture most of the trends ex-
hibited by the simulations; the major discrepancy being the clear deviation
in roll torque for increasing friction coefficient.

Figure 6 shows this large error occurs only in parameter sets that have
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Figure 5: Roll force (top), roll torque (middle) and neutral point (bottom) as the bottom
friction magnitude (left), aspect ratio (middle) and reduction (right) were varied for the
‘Combo 2’ parameter set in Table 1. Error bars indicate the finite length of sticking
between the rolls and workpiece.

asymmetric roll speeds. Combined with the widening sticking region around
the neutral point in the simulations observed in Section 5.1, this suggests
that the cross shear region is influenced significantly by elasticity. This has
the effect of smoothing the change in direction of surface shear and hence is
likely to reduce the severe changes in roll torque observed by the rigid-plastic
asymptotic model.

The increasing error in the roll force is the consequence of the simulation
and asymptotic predictions increasing at different rates. This is unsurprising
considering the friction coefficient is assumed to be similar in size to the
aspect ratio and the imbalance becomes most significant once µb exceeds
δ = 0.1.
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Figure 6: Absolute error in roll force (top) and torque (bottom) between the asymp-
totic solution and simulation results as the bottom friction magnitude (left), aspect ratio
(middle) and reduction (right) were varied for each of the parameter sets in Table 1.

Variation due to changes in aspect ratio or reduction are well-captured
by our model above δ = 0.05 and r ≈ 0.15. The poor agreement for small
reduction may result from the workpiece dropping below yield, indicated by
the widening sticking zone. The lower reduction rate may be insufficient to
produce plastic deformation throughout the roll gap resulting in significant
elastic contributions. For small δ, force and torque are generally larger in
magnitude so the larger absolute error is not too troubling.

5.3. Stress and Strain Distributions of the Asymptotic Solution

Referring back to Figure 3, it is clear that the correction terms make little
difference to the force and torque predictions. Nevertheless, there is a gain in
qualitative accuracy that stems from the inclusion of higher order terms. This
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is evident when plotting the stress distributions and velocity fields between
leading order and our corrected solution: Figure 7 and Figure 8 respectively.
Once again, the ‘Combo 2’ parameters have been used.
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Figure 7: Pressure (top), horizontal deviatoric stress (middle) and shear stress (bottom)
fields for the ‘Combo 2’ parameter set from the asymptotic model; leading order (left)
and corrected solution (right). Dashed contours of finer resolution, 0.8MPa, illustrate the
behaviour within the cross-shear region.

As discussed in Section 3.2, each variable gains additional resolution
through thickness by using the corrected asymptotic solution. Although all
solutions now exhibit top-bottom asymmetry, this is most pronounced for
the horizontal velocity, pressure and longitudinal deviatoric stresses, which
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eter set from the asymptotic model; leading order (left) and corrected solution (right).

are homogeneous in y at leading order. Both velocities gain discontinuities
at the neutral points as a consequence of their dependence on the leading
order shear stress distribution via (5). These discontinuities are a necessary
consequence of Coulomb friction used without elasticity or smoothing at low
relative slip speeds. It is interesting to note that these discontinuities are not
present in the leading order solution for u(0) and v(0) as they are independent
of the friction model used.

5.4. Computational Time Comparison

Each asymptotic solution presented here, implemented in MATLAB, was
computed in less than 21 seconds CPU time. By contrast, the finite element
solutions took between five minutes and six hours CPU time to complete in
ABAQUS.

We note also that the second order correction came at a small additional
cost compared to the leading order as the majority of the computation time
was spent finding the neutral point. The leading order solution typically
required around 20 seconds whereas less than one additional second was
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required for the second order correction.

5.5. Application to hardening material

Proper treatment of a hardening material would require us to reformu-
late this model with an alternative yield condition and rework the asymptotic
analysis. In the interest of making a quick comparison, an ad-hoc approx-
imation is made by selecting the yield stress to correspond to the mean
accumulated effective strain produced by the current model. This is com-
pared to simulations with a material with similar properties to carbon steel.
Specifically, we use an elastic modulus of 180GPa; Poisson’s ratio of 0.27;
and shear yield stress starting at 186 MPa hardening to 494 MPa at a strain
of 1.0.

Over a range of asymmetries, the trends of the roll force and torque in Fig-
ure 9 deteriorate slightly compared to the ideal case presented in Section 5.1,
however, the error remains comprable.

The median errors become 0.17MN and 0.05MNm with maximum errors
of 2.84MN and 0.48MNm. Considering increased characteristic force and
torque values of 40MN and 2.0MNm, these median values still indicate errors
below 3%.

6. Conclusion

A model for asymmetric rolling of rigid-perfect plastic sheets with Coulomb
friction has been presented and solved asymptotically to a piece-wise ordi-
nary differential equation. This was achieved via the systematic assumptions
that the aspect ratio, δ, and the friction coefficient, µ, are small. A MATLAB
implementation is included in the supplementary material.

The leading order asymptotic solution agrees with a ‘slab’ model [13] for
predicting roll force and torque in the limit of small reduction, an assumption
not needed by our method. The O(δ2) correction offers new predictions of
the through-thickness variation of each component of stress and strain. This
qualitative refinement has a relatively minor effect on the force and torque
predictions, however it gains significance when modelling hardening effects
(e.g. [16]) or if consideration must be made of the material micro-structure,
such as when modelling dynamic recrystallisation.

The asymptotic solution was compared to finite element simulations in
the most comprehensive validation of an asymmetric rolling model to date.
The asymptotic model captures most trends present in the simulated force,
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Figure 9: Roll force (top) and torque (bottom) as the top roll is adjusted to vary the
ratio of roll characteristics: friction (left), speed (middle) and size (right). The other

parameters used are (ĥ0, R̂b, r, µ, ν, Ê, k̂) = (0.01m,2.5m, 0.12, 0.1, 180GPa, 0.27,
186MPa to 494MPa).

torque and neutral point variation while taking orders of magnitude less
time to compute. Specifically, it was confirmed that the model performs
well within the region where 0.1 ≤ δ ≤ 0.3; 0.15 ≤ r ≤ 0.6; µb ≤ 0.1; and
asymmetries of roll size, speed and friction between 0.8 and 1.5. Outside these
limits, the asymptotic and ‘slab’ models should be treated with suspicion.
In particular, for µt ≥ 0.3 where the solution was found to ‘jump order’,
indicating that it should be considered invalid.

This regime corresponds to thin sheet rolling - for example, a 4mm sheet
reduced by 25% with a 0.5m effective roll radius. The assumptions are appli-
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cable for materials with minimal hardening and high elastic rigidity compared
to the yield stress, such as lead, mild steel, some aluminium alloys and more.
The tolerance for hardening can be extended by considering the through
thickness strain predictions, as presented in Section 5.5, however, including
hardening in the model formulation would be a more rigorous approach in
these circumstances.

In some cases, it seems that degradation in solution quality stems from
the appearance of regions where the workpiece sticks to the roll surfaces.
In the simulations, this results in a large sub-yield cross-shear, which has a
strong effect on torque predictions. Although we can capture cross-shear, our
rigid-plastic model is incapable of resolving these sub-yield regions correctly.

The numerics, Figure 5 in particular, also capture an interesting oscilla-
tion in the position of the bottom neutral point as the reduction is varied.
This may be related to the change in the sign of curvature observed in other
studies [3, 19, 20]. If so, this would indicate that for a model to robustly
predict curvature through reduction variations, it would require greater phe-
nomenological detail than ours or the previous ‘slab’ models.

Future work should focus around more realistic materials. Although work
hardening could be approximated by modifying the yield stress in this model
based on some mean effective strain estimate, the asymptotic method could
be used to provide a rigorous treatment for this or other hardening be-
haviours, like Smet and Johnson [28], Johnson and Smelser [16], Domanti
and McElwain [8], Cherukuri et al. [4]. Further, incorporating elasticity and
sub-yield behaviour may capture the trends missed by the present model so
would be a desirable addition, although this poses a significant modelling
challenge. Incorporating roll deformation could also improve predictions for
foil rolling.

Finally, the prediction of curvature has been attempted by several authors
[21, 26, 14] and the same methods could be applied to this asymptotic model
and the detail gained here could underpin future curvature predictions to
capture the oscillations discussed above.
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Appendix A. Second Order Corrections

Continuing the expansion in orders of δ from Section 3, we begin by
outlining the second order governing equations and boundary conditions.
The equations, after removing the O(δ) terms that were found to be zero,
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are

−β∂p
(2)

∂x
+
∂s

(2)
xx

∂x
+ β

∂s
(2)
xy

∂y
= 0, (A.1)

−β∂p
(2)

∂y
− ∂s

(2)
xx

∂y
+ β

∂s
(0)
xy

∂x
= 0, (A.2)

∂u(2)

∂x
= λ(0)s(2)xx + λ(2)s(0)xx , (A.3)

∂u(2)

∂y
+
∂v(0)

∂x
= 2βλ(0)s(0)xy , (A.4)

∂u(2)

∂x
+
∂v(2)

∂y
= 0, (A.5)

2s(0)xx s
(2)
xx + β2s(0)2xy = 0. (A.6)

The boundary conditions are

s(2)xy (x, ht(x)) = γt
(
βp(2)(x, ht) + s(2)xx

)
+

2

β
s(2)xx (x, ht)

dht
dx
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(
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dht
dx
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(
dht
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)2
)

+
2

β
s(0)xx (x)

(
dht
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)3

,

s(2)xy (x, hb(x)) = γb
(
βp(2)(x, hb) + s(2)xx

)
+

2

β
s(2)xx (x, hb)

dhb
dx

+ 2βγb

(
s(0)xy (x, hb)

dhb
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+ p(0)(x)

(
dhb
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)2
)

+
2
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s(0)xx (x)

(
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, (A.7)
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∫ ht(0)

hb(0)

−βp(2)(0, y) + s(2)xx (0, y)dy = 0,∫ ht(1)

hb(1)

−βp(2)(1, y) + s(2)xx (1, y)dy = 0, (A.8)∫ ht(x)

hb(x)

u(2)(x, y)dy = 0, (A.9)

v(2)(x, ht(x)) =
dht(x)

dx
u(2)(x, ht(x)),

v(2)(x, hb(x)) =
dhb(x)

dx
u(2)(x, hb(x)). (A.10)

The second order correction to the horizontal velocity can be determined
by integrating (A.4) with respect to y. This produces

u(2) = 2βλ(0)
∫
s(0)xy dy −

∫
∂v(0)

∂x
dy

where the constant of integration can be determined using (A.9). This ulti-
mately leads to
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(
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dx

)2
)]

(A.11)

where K(x) is as defined by (28c).
Differentiating u(2) with respect to x then integrating with respect to y
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gives the second order correction to vertical velocity via (A.5),
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The function c1(x) can be determined algebraically from the boundary
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conditions (A.10), giving

c1(x) =
dht
dx

u(2)(x, ht)− v(2)−(x, ht). (A.13)

where v(2)− = v(2) − c1(x).
The second order correction to the longitudinal deviatoric stresses follow

from (A.6) and are given as

s(2)xx = −s(2)yy = −β2 s
(0)2
xy

2s
(0)
xx

(A.14)

From (A.3), the second order correction to the flow rate parameter can
be found,

λ(2) =
1

s
(0)
xx

(
∂u(2)

∂x
− λ(0)s(2)xx

)
. (A.15)

Substituting (31) into (A.2) reveals the form of p(2) as
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Substituting this into (A.1) shows the form of s
(2)
xy to be
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)
+ c3(x); (A.17)

It now remains to solve for the arbitrary functions c2(x) and c3(x) by
applying the force boundary conditions. Applying each friction condition to
(A.17) and eliminating c3(x) leaves a differential equation for c2(x),

dc2
dx

=
1

∆h

(
s(2)xy (x, ht)− s(2)xy (x, hb)

)
− 1

∆h

(
s(2)−xy (x, ht)− s(2)−xy (x, hb)

)
(A.18)

30



where the shear terms of the first line are given by the boundary conditions
(A.7) and

s(2)−xy (x, y) = s(0)xy − y
dc2
dx
− c3(x). (A.19)

As at the leading order, this can be solved piecewise, applying continuity
of horizontal stress along the centreline by adjusting the neutral points. The
boundary conditions for the outer two regions are determined by the end
tensions (A.8) to be

c2(x) =− d2p(0)

dx2
h3t − h3b

6∆h
− dK

dx

h2t − h2b
2∆h

− β

∆hs
(0)
xx

((
dp(0)

dx

)2
h3t − h3b

3
+
dp(0)

dx
K
(
h2t − h2b

)
+K2∆h

)
(A.20)

for x = 0, 1.
Finally, this can be substituted back into (A.17) with one of the two

friction conditions to yield c3(x),

c3(x) = s(2)xy (x, ht)− s(2)−xy (x, ht)− ht
dc2
dx

(A.21)

where, once again, the first term is given by the boundary condition (A.7)

and s
(2)−
xy is defined by (A.19).
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