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1 Introduction

For much of human history, manufacturing relied on skilled artisans to hand produce each item. The
industrial revolution introduced machine-based manufacturing and then developments in mass production
lead to each item’s creation being divided into many small processes for automation or greater mastery
by a labourer. Machines are now able to accomplish nearly every step of a manufacturing process.

Recent market trends for customisability and manufacturing management strategies, like just-in-
time manufacturing, has increased the demand for highly automated yet flexible processes. Computer
numerical control (CNC) machines have met that demand and are now common place in additive and
subtractive manufacturing: milling and 3-d printing as respective examples. With additional sensing
and closed loop control, or real time optimisation, CNC is also able to adapt for material imperfections
and machine wear to achieve higher quality and consistency.

Development in forming automation has not followed suite due to a dependence on part specific
tooling. Consequently, most forming processes remain largely open loop, relying on many repetitions to
find an optimal operating condition or even human controlled tooling. This may be sufficient for mass
produced items but is unable to meet the demand of flexibility and tightening quality margins.

A successful control systems would depend on an understanding of the ongoing process in the form
of a predictive model that can be computed in real time or faster. Current design processes using finite
element models are computationally too slow, so many empirical or ad-hoc models are used instead. For
example, Orowan’s model[Orowan, 1943] for rolling, which will be described in section 2.

Using a more mathematically rigorous approach we hope to develop faster solutions that are suffi-
ciently accurate for control systems and help to make CNC forming a reality. This systematic approach
will also provide insight into the underlying dynamics of forming to improve modelling assumptions and
inform processes design decisions.

Collaborators in CUED are experimentally investigating control of a range of processes such as ring
rolling and spinning. Ring rolling reduces the thickness of a ring shaped workpiece by rotating through
a pair of rolls called the mandrel and work roll. A second pair of rolls, called the axial rolls, can also
be used to reduce the height of the workpiece, a squeezing out of the page in fig. 1. Depending on the
operation parameters and use of axial rolls, the workpiece diameter or height can be enlarged as the
thickness is reduced. The ongoing investigation is to control this cross sectional change while applying
finer rolls to produce cross-sections more complex than rectangles.

Spinning deforms a circular plate by rotating it while deforming it with a roller as indicated by fig. 2.
The roll indicated would make multiple passes along the radial length of the workpiece to incrementally
deform the workpiece towards the final shape. This deformation is typically onto an axi-symmetric
mandrel that defines the final shape so that the workpiece can be pressed firmly onto it. The current
investigation is to replace the mandrel with additional rollers such that each unique product shape does
not require the production of a mandrel but rather a set of tool paths for a collection of independently
moving rollers.

There is also a project to construct an experimental flat-sheet rolling machine, much like ring rolling
but passing a flat sheet through a pair of rolls as opposed to a ring. The machine is being designed to
also apply bending moments on the sheet moving into and out of the roll gap.

To support the research to be performed with this machine, and as a means of developing an under-
standing of the field by building on existing literature, my enquiry has focused on flat sheet rolling thus
far.
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Figure 1: A schematic of the ring rolling process.

Figure 2: A schematic of the spinning process.

1.1 A primer to rolling

Rolling is the process of reducing the thickness of a flat metal sheet by passing it through two metal
rolls. Rolling exists in many different regimes but is generally classed into hot and cold rolling. Hot
rolling occurs above the metals recrystallisation point to prevent work hardening. This process is used in
rough rolling to reduce large pieces, such as cast products, in to a size appropriate for subsequent stages
of manufacture. Some finished products produced with hot rolling are sheet metal, I-beams, vehicle
frames, building materials and other items with simple cross-sections. Cold rolling occurs below the
metals recrystallisation point so strain hardening is a by-product. This can be up to 20% increase in
strength with a 50% reduction in material thickness. With this limit on reduction, and an improved
surface finish, cold rolling encompasses the last rolling passes for a workpiece and so the workpiece is
typically much thinner. Typical products are metal furniture, computer hardware, metal drums and
thinner sheet metal.

Although some processes require variations, such as four-high cold rolling mills, functionally rolling
consists of material passing through to turning rolls that reduce the thickness of the material. Figure 3
is a diagram of this idealised process.

It is worth noting some key features of the process and introducing some terminology. The roll half
thickness, ĥ0; the roll radius, R̂; and the entrance velocity, û0 are all marked. The roll bite is the shaded
region with the roll bite length marked as l̂. Finally, the half gauge, ∆ĥ, is marked, which is distinct from
reduction, r = ∆ĥ/ĥ0, or the change in thickness as a fraction of the original thickness. This distinction
will not be significant as these become equivalent in most non-dimensionalisations.

Variables denoted with a hat, like the ones here, are taken to be dimensional. This is a convention
used throughout this document.

Rolling can be considered a generalised extrusion process; where the boundaries of an extrusion die
are stationary, the rolls of a rolling mill will rotate at some speed. Considering conservation of mass,
it is clear that the material moves faster as it passes through the roll gap. These two facts result in a
neutral point: a point where the material of the workpiece travels at the same speed as the roll. This is
depicted in fig. 4 and marked as x̂n.

The position of the neutral point will vary depending on the end forces of the workpiece. The special
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Figure 3: A two-dimensional schematic of rolling.

Figure 4: A characteristic plot of the tangential boundary velocity of the workpiece.

case of extrusion, where the neutral point moves past the roll bite entrance, requires some large external
pressure driving the workpiece through the roll bite. Generally a combination of end forces and friction
move the sheet through the roll gap.

Assuming there is no counter flow at the workpiece edges, this differing in speed will result in material
slipping along the contact faces and hence friction acts to squeeze the workpiece towards the neutral point.

This compression builds pressure from both ends to a maximum at the neutral point. This phenomena
is often referred to as the pressure hill. It is established by experiment and borne out in all rolling models
including those presented here.

2 Review of Rolling Literature

Modelling of rolling began in early twentieth century Germany with notable publications including Siebel
[1924], Siebel and Pomp [1927], Karman [1925] and Nadai [1931]. These all present variations of a slab
model: a model neglecting shear so each section of material can be vertically solved as a compression
problem. Some experimental results would indicate towards this assumption, however, there is no rigorous
basis for it and it’s application in a wide set of regimes is largely unsupported. Despite this, slab models
are still being developed and extended to new areas; areas such as asymmetric rolling where shear is
likely to become more significant. This will be returned to below.

The next major contribution came from Orowan [1943] in which an approximate model is presented
that incorporates shear. Horizontal and vertical force balances are closed by assuming that, locally, the
solution can be approximated by Nadai’s compressing wedge solution [Nadai, 1931]. This is achieved by
considering the section of material contained within the two lines A-A’ in fig. 5. Assuming this region
is in dynamic equilibrium then the forces on the dashed line must equal those on the solid line. Then
deforming the dashed line to be the circumference of a circle perpendicularly intersecting the rolls and
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approximating the rolls by flat tangential surfaces a wedge is created. Applying a wedge solution to this
section closes the force balance for each slab of material.

Figure 5: Diagram indicating the deformation to the elemental slab made by Orowan to apply the
compressing wedge solution.

Despite Orowan’s claims to eliminate ad-hoc assumptions from the analysis, the validity of this
assumption is questionable for two reasons. Firstly, the approximation of the region to a wedge has not
been established in any way and, secondly, the compressing wedge solution, although exact, can only be
found for material moving toward the wedge apex limiting it’s correctness to the inlet side of the neutral
point. Despite these inaccuracies, this solution has been generally adopted as a benchmark and is widely
used by industry, although with empirically fitted parameters.

Some developments since then include Orowan and Pascoe [1946], Bland and Ford [1948b] and Bland
and Ford [1948a] which extend Orowan’s original work in areas such as incorporating tensions or making
additional assumptions to simplify the calculation process.

Slip-line theory has also been utilised in two publications: Alexander [1955] and Collins [1969].
These develop sticking and slipping models respectively although the latter is limited to a qualitative
investigation due to the complexity of the fields. Two additional slip-line methods for asymmetric rolling
are discussed in the section below.

Hartley et al. [1989] provides the first review of rolling which predominantly covers these classical
models as well as experimentation and some early finite element simulation.

Many numerical studies have been performed since they began in 1972 with Alexander [1972]. No-
tably, Venter and Abd-Rabbo [1980] and Venter and Adb-Rabbo [1980] develop numerical implemen-
tations of the Orowan [1943] solution. Finite element simulations have since become very popular and
several reviews exist including Montmitonnet and Buessler [1991] and Montmitonnet [2006], in which 34
and 25 publications of numerical studies have been reviewed respectively. It is, in fact, included as an
example problem in the commercial finite element package, ABAQUS, ‘Example Problems Manual’ [Das-
sault Systemes, 2012]. Despite this ubiquity the result processing remains slow, too slow for control, and
the quantitative knowledge from these investigations is difficult to transfer; the process of constructing
and solving these simulations is often repeated for nearly identical set-ups in independent studies.

2.1 Asymptotic Methods

More recently, asymptotic methods have been applied to solve a complete set of governing equations in
the limit of a small aspect ratio: thin sheets and large rollers. It was first utilised in metal forming,
specifically conical extrusion, in 1987 by Johnson. Having transferred these techniques from modelling
creep in glaciers, he considers a pseudo-steady-state conical extrusion of a power-law rate hardening
elasto-plastic with Coulomb friction. The asymptotic limit used is quite elegant in that it considers
deviation from a ‘plug-like’ flow making the solution valid for either low friction or shallow dies. One
or both of these assumptions form the basis of all following asymptotic methods in forming. One other
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publication could be found that examines solid metal extrusion with asymptotics, Govindarajan and
Aravas [1991], and it considers small reduction rate extrusion before adding metal porosity.

Johnson is a named author on numerous publications that apply the same techniques to sheet rolling.
The first of these is Smet and Johnson [1989], followed three years later by Johnson and Smelser [1992].
The former applies an almost identical process to that in Johnson [1987] while also neglecting elasticity.
The major distinctions from extrusion being in the geometry and direction of friction: opposite direction
either side of the neutral point. The latter makes a number of simplifications to the former to progress
further to a closed form solution; a rigid-plastic material with yield stress as an arbitrary function is
used and the magnitude of surface friction is set to be a constant fraction of the yield stress.

Although yielding single integral solutions, these assumptions may fail to accurately capture the
physics of the problem, particularly the friction model. This motivated a similar formulation in Domanti
and McElwain [1995], who re-introduces the more commonly used Coulomb friction, while assuming
the ratio of maximum pressure to yield stress is large and the reduction is small. The first of these
requires compressive end conditions and the latter, due to the coupling between reduction, roll bite
length and sheet thickness, restricts the valid geometry. Finally, the most comprehensive two-dimensional
formulation to date is presented in Cherukuri et al. [1997]. Using a relative-slip friction model and strain-
rate dependent constitutive equations, the governing equations are solved to ODEs, assuming only a small
aspect ratio. This is repeated for small, medium and large friction and no-slip conditions.

Asymptotic approaches to three dimensional effects and spread are Johnson [1991] and Domanti
et al. [1994]. The former has a rare comparison to finite element simulations and experimental results.
Asymptotic analysis has also been used for stability analysis of ‘chatter’ in Johnson [1994a]; a multiple
scales analysis of work roll heat transfer in Johnson and Keanini [1998]; and a model for roller deformation
in Langlands and McElwain [2002]. Other considerations include surface finish, heating and residual
stresses. A review of modelling methods applied to rolling is presented in Domanti and McElwain [1998]
although no comparison of results is made.

2.2 Asymmetric Rolling

Asymmetric rolling, when not unintentional, exploits unequal drive, friction or size of the rolls to reduce
total force and torque, improve surface finish or improve strain hardening. The challenge, however, is
that asymmetry results in sheet curvature which can be undesirable.

Experimentation has been used to quantify roll force and torque for a range of geometries and mate-
rials [Siebel, 1941, Sachs and Klinger, 1947]. A variety of techniques have also been used to investigate
other properties such as contact stress distributions and workpiece curvature [Johnson and Needham,
1966, Buxton and Browning, 1972, Ghobrial, 1989].

Analytical work has included a range of solutions, most popular is modifying slab models [Chekmarev
and Nefedov, 1956, Kennedy and Slamar, 1958, Sauer and Pawelski, 1987] which has seen incremental
development to include greater asymmetry and curvature predictions [Mischke, 1996, Hwang and Tzou,
1996, Salimi and Sassani, 2002]. Alternatives also include the upperbound method [Pan and Sansome,
1982, Kiuchi and Hsiang, 1986] and slipline methods [Dewhurst et al., 1974, Collins and Dewhurst, 1975],
both of which are able to predict curvature.

Finite element simulations have also been applied to provide detailed solution information for more
general configurations. Most studies focus on curvature prediction and roll force distributions [Shivpuri
et al., 1988, Richelsen, 1997, Knight et al., 2005].

Asymptotic analysis has only been applied to asymmetric rolling in Johnson [1994b] where an asym-
metric friction and roll speed were considered in a friction factor model, that is the surface shear is equal
to a constant factor of shear flow. Asymmetric friction was investigated by changing each rolls friction
coefficient and asymmetric roll speed was modelled by having two independent neutral points and a
region of cross shear between them. Roll geometry was also discussed briefly but dismissed as being
able to be incorporated into the friction coefficient. Experimental evidence that shows the direction of
curvature in asymmetric rolling is dependent on geometry suggests this is approximation is insufficient
[Collins and Dewhurst, 1975].

3 Governing Equations

Considering an elemental unit of material that is confined by plane strain - that is independence, through
zero strain, in the z direction - horizontal and vertical force balances are immediately obvious,
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−∂p̂
∂x̂

+
∂ŝxx
∂x̂

+
∂ŝxy
∂ŷ

= 0,

and − ∂p̂

∂ŷ
+
∂ŝyy
∂ŷ

+
∂ŝxy
∂x̂

= 0.

where p̂ is the pressure and ŝij is the ijth element of the deviatoric stress tensor.
At least one more equation is required to close this system and completely determine the state of

stress although, typically, at least four more exist as a material flow rule and yield condition. Many flow
rules exist to describe different materials but the common Prandtl-Reuss equations will be used here,

∂û

∂x̂
= λ̂ŝxx,

∂v̂

∂ŷ
= λ̂ŝyy,

and
∂û

∂ŷ
+
∂v̂

∂x̂
= 2λ̂ŝxy,

where λ̂ is the time differential of the flow parameter. This additional variable is introduced to ensure
both compatibility and the yield condition can be met. Again, many yield conditions exist but the
commonly used von Mises yield condition has been selected here. It is assumed that the entire roll bite
is undergoing plastic deformation and hence is at yield giving the equality

ŝ2
xx + ŝ2

yy + 2ŝ2
xy = 2k̂2.

where k̂ is the yield stress in shear, taken to be a constant.
The selection of flow rule and yield condition are commonly used models and in this form describe a

rigid-perfectly plastic material. There are numerous more models that have been developed to describe
additional phenomena or specific characteristics of certain materials. These are discussed later in this
section and again in section 6 in the context of further investigations to build on this existing model.

3.1 Boundary Conditions

The velocity on the roll surface is attained from considering the incompressibility condition,

v̂(x̂, ĥt(x̂)) = û(x̂, ĥt(x̂))
dĥt
dx̂

.

Stress conditions are found by considering horizontal and vertical equilibrium on a boundary volume
element,

σ̂xx
dĥt
dx̂
− ŝxy + τ̂t − ŝt

dĥt
dx̂

= 0

σ̂yy − ŝxy
dĥt
dx̂
− ŝt − τ̂t

dĥt
dx̂

= 0.

where σ̂ii = −p̂ + Ŝii, τ̂ is the interfacial traction stress and ŝ is the interfacial normal stress. Apply
plane stress, ŝxx = −ŝyy, to the previous result for

ŝxy = τ̂t

1 +

(
dĥt
dx̂

)2
− 2ŝxx

dĥt
dx̂

+ ŝxy

(
dĥt
dx̂

)2

This is closed with a friction model; like material models a large range of friction models exist.

3.1.1 Coulomb Friction

Coulomb friction is a widely used friction model and has been applied to static and slipping friction,
although coefficient values are often very different. It is developed on the assumption that the traction
force is proportional to the normal pressure,
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τ̂ = µσ̂ · n̂ ∆û

|∆û|
.

where ∆u is the relative slip velocity of the plastic material past the surface and µ is a constant friction
coefficient.

3.1.2 Relative-Slip

Relative-slip friction is a slipping model as it defines the traction force as proportional to the velocity
difference between the surfaces in contact,

τ̂ = κ̂∆û.

where κ̂ is a constant friction coefficient.

3.1.3 Assorted Others

An assortment of other models that have been identified in literature are also included for discussion.

Friction Factor The friction factor model appears to be a large simplification, often used to
make a problem more tractable. It assumes that the traction force is constant at some fraction of
the yield stress,

τ̂ = ck̂
∆û

|∆û|
.

where c is a constant friction factor.

No-slip The no-slip condition assumes that the traction is sufficiently high to ensure the materials
stick. In terms of velocities it is

û = Û,

where Û is the roll velocity. For rigid perfectly-plastic, and other, materials this will leave the
stresses undetermined and so the associated stress condition is a friction factor model where c = 1.

Transitional Models As the traction exceeds the material yield, the friction will transition from
a slipping to a no-slip model. Some solutions are able to capture this behaviour, such as Orowan
[1943].

Similarly, some models try to combine Coulomb and relative-slip friction with some transition
region. Experimentally there is evidence that the former performs well for static and low relative
velocity differences where the latter is better for higher relative velocities.

One such example of this is a model developed in Karabin and Smelser [1990]:

τ̂ = |τ̂ | ∆û

|∆û|

where |τ̂ | = min
(
µψŝ, k̂

)
and ψ = min

(
|∆u|
∆v

, 1

)
where µ and ∆v are both constants and note that ψ is defined with a nondimensionalised slip

velocity. Effectively this formulation will behave like relative slip at low slip speeds, when ψ < 1,
then transition to a Coulomb model at higher speeds, ψ = 1 makes |τ̂ | = µŝ, before transitioning

to a sticking model to not exceed the yield condition, |τ̂ | = k̂.

4 Symmetric Rolling

The models presented in this section have not been explicitly presented in literature, however, they
are only variations in modelling assumptions from the four publications of asymptotic modelling of
two-dimensional symmetric rolling discussed in section 2.1. Although this work is in part filling in the
gaps left in literature some interesting insights arise about limitations of certain assumptions. This
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suggests at the need for additional phenomena to be modelled in order to achieve complete consistency.
This section begins by non-dimensionalising the equations presented in the previous section with some
discussion about the choice of scaling. One of several choices of scaling is selected to present the solution
method. This is completed for a general friction model before both Coulomb and relative-slip models are
applied. Some results from these models as well as a higher friction scaling solution are presented with a
discussion of their limitations and challenges which may go some to explain the selection of models used
in the existing literature.

4.1 Nondimensionalisation

It is worth first noting, again, that dimensional quantities are denoted with a hat and non-dimensional
quantities without.

Defining δ as the ratio of vertical to horizontal characteristic length scales, input half thickness and
roll bite length respectively so δ = ĥ0/l̂, indicates a number of obvious scalings. This is the small
parameter that featured often in previous asymptotic studies of rolling and extrusion. It is crucial to
attaining a separation of directional derivatives, essential to arriving at a closed form solution.

The first is velocity; the horizontal velocity is scaled by some characteristic velocity, û = uû0, taken
here as the input velocity. This can can ultimately be chosen to satisfy the roller speeds if the problem
is defined as such. The vertical velocity is taken to balance the horizontal velocity in the no-penetration
boundary conditions, hence scaling v̂ = vδû0.

The stress scalings are less obvious as some constraints exist yet there remains freedom to decide some
relative sizes. Begin by defining characteristic shear, deviatoric longitudinal stress and pressure, ˆtau0,
ŝ0 and p̂0. Now consider the yield condition. This suggests the larger (or both if similar magnitude) of
the deviatoric stresses could be scaled by the yield stress k.

Balancing the derivatives in each direction of the horizontal equilibrium requires τ̂0 = δmax (ŝ0, p̂0)
although solving in the case where ŝ0 > p̂0 leads to an inconsistency: pressure jumps an order. This
indicates that the more correct balanced is between pressure and shear stress hence τ̂0 = δp̂0. Finally,
define β̄ as the ratio of characteristic deviatoric shear to longitudinal stresses, τ̂0/ŝ0, and it is possible
then to enumerate three possibilities based on the magnitude of β̄.
In ascending order, if β̄ = O(δ) then

ŝ0 = k̂, τ̂0 = β̄k̂ and p̂0 =
β̄

δ
k̂.

If β̄ = O(1) then

ŝ0 = k̂, τ̂0 = β̄k̂ and p̂0 =
β̄

δ
k̂.

But, if β̄ = O(δ−1) then

ŝ0 =
k̂

β̄
, τ̂0 = k̂ and p̂0 =

k̂

δ
.

As it may be obvious by it’s definition, β̄ is some measure of the size of friction. In it’s most elegant
case it maps to the Coulomb friction coefficient but may depend on other parameters, such as velocities in
the relative-slip model. A selection of these regimes have been made implicitly in the previous asymptotic
rolling literature. Smet and Johnson [1989], Johnson and Smelser [1992] both use the middle friction
regime and Domanti and McElwain [1995] assumes the friction is small yet the pressure is large which
contradicts these scalings. To achieve this compressive end conditions are required to raise the pressure
in the roll gap - a point not mentioned in the publication. This choice was made explicitly in Cherukuri
et al. [1997] where all three were addressed. The reason for the limited selection may be due to some
of these regimes being incompatible with certain material or friction models. This point is discussed in
greater detail in section 4.5.

The final scaling to decide is the flow parameter which is chosen such the horizontal flow equation

balances at leading order, hence λ̂ = û0

k̂l̂
λ or λ̂ = û0β̄

k̂l̂
λ.

As this solution process becomes both expansive and repetitive it will be presented only once for the
case where β̄ = O(δ) and other regimes will be illustrated through making comparison to this solution.

For convenience, let β = β̄/δ = O(1).
This gives the governing equations for force equilibrium,
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−β ∂p
∂x

+
∂sxx
∂x

+ β
∂sxy
∂y

= 0, (1)

−β ∂p
∂y

+
∂syy
∂y

+ βδ2 ∂sxy
∂x

= 0; (2)

flow,

∂u

∂x
= λsxx, (3)

∂v

∂y
= λsyy, (4)

∂u

∂y
+ δ2 ∂v

∂x
= 2δ2βλsxy; (5)

incompressibility, or equally in this case, plane strain,

∂u

∂x
+
∂v

∂y
= 0; (6)

and yield,

s2
xx + s2

yy + 2δ2β2s2
xy = 2. (7)

with boundary conditions for velocity,

v(x, h) = u(x, h)
dh

dx
v(x, 0) = 0, (8)

and shear,

sxy(x, h) = τ(x)

(
1 + δ2

(
dh

dx

)2
)
− 2

β

dh

dx
syy(x, h(x)) + δ2sxy(x, h(x))

(
dh

dx

)2

sxy(x, 0) = 0, (9)

where we approximate the roll as a parabola so that

h = 1− r(2x− x2) (10)

and
dh

dx
= −2r(1− x).

Taking all parameters as O(1), except δ, these equations are solved for a perfect-plastic, small aspect
ratio, plane-strain rolling set up.

4.1.1 Expansion in δ

Taking the aspect ratio, δ, as the small parameter, each dependant variable, vx, vy, Sxx, Syy, Sxy, p and
λ, is expanded in typical asymptotic style.

a(x, y) = a(0)(x, y) + δa(1)(x, y) + δ2a(2)(x, y) + ....

Substituting these expansions into the governing and then assuming δ is sufficiently small that each
power of δ is disparate and can be considered orthogonal. Grouping like terms produces a series of, what
is hoped to be, tractable equations that can be progressively solved for an increasingly accurate solution.

4.1.2 Considering O(1) Terms

Begin by determining the leading order velocities; integrating eq. (5) shows that leading order horizontal
velocity is a function of x only. Using a conservation argument and mass flow in and out of any vertical
slab spanning the roll gap readily produces the result

u(0) =
1

h(x)
. (11)
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Substituting this into eq. (6) gives an equation for the leading order vertical velocity. After integration
and the application of the boundary conditions, eq. (8), the solution is found to be

v(0) =
y

h(x)2

dh

dx
(12)

Now the longitudinal deviatoric stresses are determined with eq. (7). Applying plane strain at leading
order leaves

sxx
(0) = −syy(0) = 1 (13)

where the sign has been chosen to satisfy the compression from the rolls. Choosing the opposite signs
would require compression end conditions of greater magnitude than the compression of the rollers.

Diverting momentarily from stresses, rearranging eq. (3) for the flow parameter gives

λ(0) =
1

h(x)2

dh

dx
(14)

Returning now to shear stress and pressure. These remaining variables are coupled through the
horizontal force balance and the choice of friction condition. Fortunately, substituting the result eq. (13)
into the vertical force balance, eq. (1), reveals that the leading order pressure is independent of y. This,
with eq. (13) substituted again, simplifies this coupling to a pressure derivative balanced by a shear
derivative. Integrating in y between the boundary conditions and substituting eq. (9) gives an equation
for pressure,

dp(0)

dx
=
sxy

(0)(x, h(x))

h(x)
=
τ (0)(x)

h(x)
+

2

βh(x)

dh

dx
. (15)

This will either be an integral equation for relative-slip friction or an ordinary differential equation for
Coulomb friction or something less tractable for more complex boundary conditions.

There will be at least one constant of integration that is yet to be determined. This constant(s) is
part of a system that is solved to satisfy the end forces. Ultimately this system comes down to solving
for roll velocity, the workpiece velocity - the velocity scaling û0 chosen - and the magnitude of pressure
- the undetermined coefficient. The position of the neutral point is also determined by this system.

Either by inspection or by an indefinite integral in y it can be determined that leading order shear is
linear in y. With both boundary conditions, eq. (9), this is sufficient to determine

sxy
(0) = y

sxy
(0)(x, h(x))

h(x)
= y

(
τ (0)(x)

h(x)
+

2

βh(x)

dh

dx

)
. (16)

4.1.3 Considering O(δ) Terms

Repeating this process for the next order leads to the first order velocities, flow parameter and longitu-
dinal deviatoric stresses all to be uniquely zero. Both the first order pressure and shear stress will also
be zero unless there is some first order frictional effect, given

dp(1)

dx
=
sxy

(1)(x, h(x))

h(x)
=
τ (1)(x)

h(x)
(17)

and sxy
(1) = y

sxy
(1)(x, h(x))

h(x)
= y

τ (1)(x)

h(x)
. (18)

4.1.4 Considering O(δ2) Terms

The second order corrections are the next set of non-trivial solutions although they increase considerably
in complexity due to the forcing terms of the leading order. Due to this complexity they do not provide
much additional insight into the system but do introduce y dependence in the pressure, longitudinal
stress and horizontal velocity terms as well as quadratic y dependence in shear and vertical velocity.

4.2 Applying Friction Models

Having now determined the equations for the velocities, stresses and flow parameter given an arbitrary
friction model, it is now straight forward to substitute a friction models to compare their behaviour and
limitations.
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4.2.1 Coulomb

Nondimensionalising the coulomb friction boundary condition gives

τ =
µ

βδ
(p− syy)

∆u

|∆u|
.

This suggests β = µ
δ which leaves the ordinary differential equation

dp(0)

dx
− γ µ

h(x)
p(0)(x) =

γ

h(x)
+

2

βh(x)

dh

dx

due to the coupling between shear and pressure, where

γ =

{
1 : x < xn
−1 : x ≥ xn

This can be solved in each piecewise region for

p(0) = e
∫
µ
γ(x)
h(x)

dx

(
c0 +

∫
e−

∫
µ
γ(x)
h(x)

dx 2

µγ(x)

dh(x)

dx
dx

)
− 1

µ
.

where c0 is a also a piecewise constant, constant either side of the neutral point. Assuming the parabolic
form for the rollers, eq. (10), this can be simplified to

p(0) =

x− 1−
√

r−1
r

x− 1 +
√

r−1
r


µγ
2

√
r
r−1

c0 +

∫ x− 1 +
√

r−1
r

x− 1−
√

r−1
r


µγ
2

√
r
r−1

4r (x− 1)

µγ
dx

− 1

µ
.

This result substitutes easily to complete the leading order shear stress

sxy
(0) = y

(
µ
p(0)(x) + 1

h(x)
+

2

βh(x)

dh

dx

)
.

As there is no first order correction to traction the first order correction to both pressure and shear
stress are also found to be zero.

The velocity scaling and neutral point are determined by setting the coefficient for each piecewise
region such that both end conditions are satisfied,

2

∫ 1

0

σxx(0, y)dy = Tin

2

∫ h(1)

0

σxx(1, y)dy = Tout.

The neutral point is then selected to ensure pressure continuity. This provides a roll speed relative to the
workpiece where both can be determined by the workpiece entrance velocity or the roll speed, whichever
is specified.

4.2.2 Relative-Slip

Repeating this for the relative-slip friction model, which is nondimensionalised as

τ =
κ̂∆û0

βδk̂
∆u

where ∆û0 = Û − û0 and Û is the roll velocity. This would suggest β = κ̂∆û0

δk̂
. With this, the pressure

can be solved with a single integration,

p(0) =

∫
κ
U − u(0)

h(x)
+

2

βh(x)

dh

dx
dx,

11



which can be reduced to closed form with the rolls taking a parabolic form,

p(0) =
κ

2
(U − r)

√
r

r − 1
log

x− 1−
√

r−1
r

x− 1 +
√

r−1
r

+

(
κr +

2

β

)
log
(
1− r

(
2x− x2

))
The shear is, again, an easy substitution for the closed form solution,

sxy
(0) = y

(
κ
U − u(0)

∆Uh(x)
+

2

βh(x)

dh

dx

)
.

4.3 Results

To first order the deviatoric longitudinal stresses are straight forward. The pressure and shear terms,
however, exhibit the leading dynamics of rolling. It is evident from fig. 6 that both friction models
exhibit the pressure hill although the neutral point is not coherent between the two models.

Both show zero shear along the centreline as prescribed by the boundary condition but the roll
boundary has considerably different behaviour. The fault of each is the existence of a discontinuity: the
Coulomb model is across the neutral point where the relative slip friction is maximal at the entrance
and exit which transitions to a stress free boundary beyond the roll gap. It is likely this behaviour that
motivated transition models like those described in section 3.1.3.
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Figure 6: Plots showing the shear stress and pressure hill along the centreline for low magnitude relative-
slip and Coulomb friction asymptotic models.

Both asymptotic models produce similar trends as the slab model and Orowan’s model as the roll
gap ratio, δ, is varied, although both force and torque result in higher estimates. This is also true for
the relative-slip model as the friction coefficient is varied, however, the Coulomb friction model produces
much higher values as the friction coefficient is increased. This is evident in fig. 7.

These results were compared to FE simulation, also included in fig. 7, generated by ABAQUS which
is a commercial package. The parameters were matched as closely as possible wherever possible however
an approximation for elasticity had to be made: the Young’s modulus was turned up as high as was
stable. The package also implements a Coulomb friction model. The results of the simulation do not
appear to have converged so, although it is possible to find values that match well, this must be further
investigated.
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Figure 7: A comparison of roll force and torque values between finite element simulation, slab model,
Orowan’s solution and asymptotic models as the magnitude of friction and roll gap ratio varies.

4.4 Medium Friction

The solution process above can be repeated with β̄ = O(1). This produces much the same results except
the longitudinal deviatoric stress which, from eq. (7), takes the form

sxx
(0) = −syy(0) =

√
1− β̄2sxy(0)2

These equations can be solved for the relative-slip friction model and produce results that are similar
to those of small friction. The longitudinal deviatoric stress is no longer homogeneous, however, the
remaining variables are only altered by a scaling. In fig. 8 the maximum pressure and neutral points
vary slightly from the small friction case.

The second challenge arises when friction and pressure are coupled such as the Coulomb friction
model. The smallest order works satisfactorily, however, the larger orders require higher friction which
is violated without compression end condition to raise the pressure in the roll gap. This is an inherent
problem with the scaling used in Domanti et al. [1994] although it is not discussed there.

4.5 Discussion

Irrespective of the friction model the assumption of β becomes significant to the solution and at least three
regimes must be solved for each material and friction combination pair to gain a complete understanding:
β = O(δ), β = O(1) and β = O(δ−1). This still does not account for high friction regimes transitioning
to sticking, although, this can be circumnavigated by choosing a strain-rate hardening material model
as the material will simply harden with increased shear. This is how Cherukuri et al. [1997] progressed
through the friction regimes without addressing the issue of sticking.

Ultimately, this set of non-dimensional equations are solved differently depending on which friction
model, material model and magnitude of friction is chosen. The common model choices are laid out with
publications that address each combination in table 1.

Additional simplifications can also be made, such as small reductions, that can extend closed-form
solutions to higher orders.
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Figure 8: Shear stress and pressure distribution along the centreline for medium magnitude relative-slip
and Coulomb friction asymptotic models.

Material Model Coulomb Friction Relative-Slip No-Slip

Perfectly-Plastic Domanti et al. [1994]
This work

This work

Strain-Rate Dependent Cherukuri et al. [1997] Cherukuri et al. [1997]

Strain Dependent Smet and Johnson [1989]

Table 1: Table of work performed on each material and friction models.

5 Weakly Asymmetric Friction, Geometry and Roll Speeds

In this section it is no longer assumed that the rolling process is symmetric; there may be variation
between the top and bottom rolls in friction, size or drive speed. It is, however, assumed that for each
of these characteristics the ratio between the top and bottom roll is of O(1). The approach to finding
a solution is identical to the previous section, except that integrals are taken between top and bottom
roll surfaces instead of using the symmetry plane. This requires a second set of boundary conditions for
which the parameters determining size, friction and roll speeds can be varied. The scalings used are the
same as those in section 4.1 for the small β and the governing equations are the same as section 3 so this
section proceeds straight to the solution for Coulomb and Relative-Slip frictions after briefly describing
the assumed geometry.

5.1 Workpiece Alignment

Firstly, we take the rolls to be vertically aligned. It is then assumed that the workpiece feeds into the
roll gap in such a way that the initial contact, tri-junction, with each roll, points A and B in fig. 9, are
vertically aligned. The effect of plastic deformation will also ensure that the workpiece leaves the roll
gap at the centre line of the rolls, where the roll bite is thinnest.

Asymmetry, in general, will induce a bending moment at either end of the roll bite, bending the
workpiece around either roll and violating the previous assumptions about vertically aligned tri-junctions.
This effect, however, is assumed to be negligible.

Defining roll sizes, Rt and Rb; total reduction, 2r = ∆ĥt+∆ĥb
2ĥ0

; and workpiece thickness 2ĥ0 is sufficient
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Figure 9: Illustration of the asymmetric roll configuration. Note the vertical alignment of tri-junctions,
A and B, on the inlet. The same alignment for the outlet is required by vertically aligning the rolls.

to geometrically determine the system. It can then be calculated that the top and bottom reductions
are given by

rt =
4rR̂b − 4r2

2R̂t + 2R̂b − 4r

rb =
4rR̂t − 4r2

2R̂t + 2R̂b − 4r
= 2r − rt

and the roll bite length is

l̂2 = min
(

2R̂ĥ0r − ĥ2
0r

2
)

where both top and bottom are considered.

5.2 Coulomb Friction

Noting, for clarity, the top and bottom boundary conditions for shear are

sxy(x, ht) = τt(x)

(
1 + δ2

(
dht
dx

)2
)
− 2

β

dht
dx

syy(x, ht(x)) + δ2sxy(x, ht(x))

(
dht
dx

)2

(19)

sxy(x, hb) = τb(x)

(
1 + δ2

(
dhb
dx

)2
)
− 2

β

dhb
dx

syy(x, hb(x)) + δ2sxy(x, hb(x))

(
dhb
dx

)2

(20)

and velocity

v(x, ht) = δu(x, ht)
dht
dx

(21)

v(x, hb) = δu(x, hb)
dhb
dx

. (22)

Define ∆h = ht(x)− hb(x) for convenience.
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Velocity is found to be

v(0) =
2

∆h2

(
ht
dhb
dx
− hb

dht
dx

+ y
d∆h

dx

)
(23)

and u(0) =
2

∆h
. (24)

Longitudinal deviatoric stress required no integration and so is found to be the same.
The flow parameter can now be solved for

λ(0) =
2

∆h2

d∆h

dx
. (25)

This leaves the pressure and shear stress which can be solved in their general form as

sxy
(0) =

s
(0)
xy (x, ht(x))− s(0)

xy (x, hb(x))

ht(x)− hb(x)
y +

ht(x)sxy
(0)(x, hb(x))− hb(x)sxy

(0)(x, ht(x))

ht(x)− hb(x)
. (26)

and
dp(0)

dx
=
sxy

(0)(x, ht(x))− sxy(0)(x, hb(x))

ht(x)− hb(x)
(27)

where the constant of integration are to be solved, as discussed before, using the end tensions.
For a Coulomb friction model, the boundary shear terms would be

τt = γtσ(x, ht(x)) · n = γt

(
βp(x, ht) + sxx(x, ht) + δ2

(
2βσxy(x, ht)

dht
dx
− 2sxx(x, ht)

)(
dht
dx

)2

+O
(
δ4
))

(28)

τb = γbσ(x, hb(x)) · n = γb

(
βp(x, ht) + sxx(x, hb) + δ2

(
2βσxy(x, hb)

dhb
dx
− 2sxx(x, hb)

)(
dhb
dx

)2

+O
(
δ4
))

(29)

where

γt =

{
1 : x < xnt
−1 : x > xnt

, γb =

{ −µbµt : x < xnb
µb
µt

: x > xnb
, (30)

and xnt is the neutral point on the top roller and xnb is the equivalent on the bottom roller. This
introduces a third region to the piecewise function of pressure, known as the region of cross shear.

Define ∆γ = γt − γb. Like in the symmetric case, the differential equation for pressure is solved in
each of the three regions where ∆γ is constant and then each solution is matched at the steps.

Two are found by matching coefficients at the entrance and exit of the roll gap. The last, by the
intersection with the previous two, determine the two neutral points which in turn determines the roll

velocities. This choice must therefore must satisfy the specified roll speed ratio such that u(0)(xNt)
u(0)(xNb)

= Ut
Ub

.

This coupling is illustrated in fig. 10. The absolute velocities are then satisfied by changing the velocity
scaling of the solution, û0.

Making the substitution produces the differential equation, having gained a term from the symmetric
case,

∂p(0)

∂x
− βp(0) ∆γ

∆h
=

∆γ

∆h
+

2

β∆h

d∆h

dx
.

If ∆γ = 0 then

p(0) =
2

β
log (∆h) + c0

and if ∆γ 6= 0 then

p(0) = e
∫
β∆γ

∆hdx

(
c0 +

∫
e−

∫
β∆γ

∆hdx
2

β∆γ

d∆h

dx
dx

)
− 1

β
.
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Figure 10: Figure showing the qualitative form of the sections of pressure.

After substituting parabolic rollers and assuming ∆γ is constant over the considered range,

p(0) =

x− 1−
√

r−1
r

x− 1 +
√

r−1
r

β∆γ
2

√
r
r−1

c0 +

∫ x− 1 +
√

r−1
r

x− 1−
√

r−1
r

β∆γ
2

√
r
r−1

4r (x− 1)

β∆γ
dx

− 1

β
.

Note that a closed form of this integral can be produced using hypergeometric and Appell hypergeometric
functions.

Now the shear stress can be determined by substituting this result into

sxy
(0)(x, y) = −βp

(0)(x) + 1

∆h
(∆γy + (γt(x)hb(x)− γb(x)ht(x))) .

Like the symmetric case, there is no contribution by the first order correction.
O(δ2) terms increase in complexity again due to the difference in terms presented in this section.

They are still solvable.

5.3 Relative-Slip Friction

Up to O(1) both solutions match except for the leading order pressure and shear. The tractions becomes

τt =
Ut − us(x, ht(x))

∆U
=
Ut − u(x, ht(x))

(
1 + 1

2δ
2 d2h
dx2 +O(δ3)

)
Ut − u0

(31)

τb = κ
Ub − us(x, hb(x))

∆U
= −κ

Ub − u(x, hb(x))
(

1 + 1
2δ

2 d2h
dx2 +O(δ3)

)
Ub − u0

(32)

which gives shear as

sxy
(0)(x, ht(x)) =

u(0)(x, ht(x))− Ut
∆U

− 2

β

dht
dx

=
2− Ut∆h

∆h∆U
− 2

β

dht
dx

(33)

and sxy
(0)(x, hb(x)) = −κu

(0)(x, hb(x))− Ub
∆U

− 2

β

dhb
dx

= −κ2− Ub∆h
∆h∆U

− 2

β

dht
dx

. (34)

The pressure term can now be integrated directly.
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5.4 Results and Discussion

Unsurprisingly, the results of the asymmetric solution are very similar to the symmetric case. Asymmetric
friction coefficients have the most subtle effect: moving the line of zero shear toward the roll with less
friction and moving the neutral point in the relative-slip model. Roll sizes have a similar effect by moving
the line of zero shear toward the smaller roll and drifting the neutral point in the relative-slip model.
Both these trends can be made out comparing fig. 11 or fig. 12 with the earlier plots, fig. 6.

Asymmetric roll speed has the biggest impact as it directly moves one of the neutral points. This
occurs in both models, particularly relevant for the Coulomb model as this region of cross shear has
distinctly different behaviour as a region of more constant shear through the sheet thickness. This is
marked by the large red zone in fig. 11.
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Figure 11: Pressure, shear stress, deviatoric stress, flow map, roll pressure and roll shear for a asymmetric
small Coulomb friction asymptotic model.

Section 5.4 presents the force and torque for each roll of the Coulomb friction model as the indicated
value of the bottom roll is varied. In comparison to finite element results, these models do not match
closely in magnitude or trend.

The results in section 5.4 are after ∆γ is taken as µb − µt instead of 1− µt/µb.
This ad-hoc adjustment appears to be sufficient to match the trends in force and torque while the

roll speeds change. This also requires more investigation as it may be the result of a subtlety of taking
exponentials of a small parameters.

6 Future Work

Thus far models have been developed for both symmetric and weakly asymmetric rolling in a thin-sheet
and low friction regime. Further work is required to validate each of these models.

Producing a numerical solver to solve the exact governing equations is the next step to validate the
correctness of the asymptotic models and to provide some quantification of the error as each parameter
is varied.

Finding a steady state FE solution for the rolling problem would also provide evidence for the cor-
rectness of the asymptotics but alternatively may highlight phenomena that are not captured by the
model such as the significance of elasticity and hardening.

After the completion of the rolling machine, or a collaboration with another laboratory such as that
from the University of Aachen, experimental comparison would provide scope for a quantitative review
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Figure 12: Pressure, shear stress, deviatoric stress, flow map, roll pressure and roll shear for a asymmetric
small relative-slip friction asymptotic model.
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Figure 13: Comparison of roll force and torque between small Coulomb friction, asymmetric asymptotic
model and FE simulations as roll size, speed and friction ratios are varied. The ratio is determined by
holding the top roll constant and varying the parameter of the bottom roll only.

of the models available in literature. This may be enhanced by completing additional rows or columns
of table 1 to compare the impact and significance of material and friction models.

Many opportunities also exist to incorporate more complex physics and phenomena into the models.
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Figure 14: Comparison of roll force and torque between small Coulomb friction, asymmetric asymptotic
model with a fudge to the exponential pressure term and FE simulations as roll size, speed and friction
ratios are varied. The ratio is determined by holding the top roll constant and varying the parameter of
the bottom roll only.

6.0.1 Moments and Curvature

A brief investigation was carried out to vary the boundary by parameterising an additional point and
create a triangular shape, this is illustrated in section 6.0.1 where the two parameters are a and b.
Three values define the boundary condition: a, b and

∫
σ̂xx(0, y)dy. Two valid conditions are found

to determine these values in the horizontal force and bending moment, however, the vertical force is
identically zero. This means small bending moments could be supported but the boundary apex would
only be restricted to a curve of solutions.

Figure 15: Illustration of a non-square plastic region within the roll gap parameterised by a and b.

Limitations to this investigation are probably due to the necessity of elasticity and the movement of
the trijunction to match a general boundary condition. Asymmetric rolling produces moments on the
worked and unworked sections of the sheet but it unclear whether this alone is sufficient to account for
the bending that occurs in regular operation or processes like ring rolling.

6.0.2 Coupling Additional Physics

Roller deformation is also a major concern for the regime these models are relevant in: cold, thin-sheet
rolling. There is a possibility to incorporate a simple elastic roller model into the asymptotic analysis.

Temperature would be another interesting addition to the model, however, this is likely a challeng-
ing proposition. Temperature is tightly coupled with plastic deformation through dependencies of the
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material properties on temperature and heating effects from deformation energy.

6.1 Other Processes

6.1.1 Ring Rolling

Two major challenges exist in modelling ring rolling. The first is the significant moments that act as
boundary conditions to the roll gap. These are coupled entry to exit by an outer problem of the ring
elasticity. The second is the aspect ratio of rings are often much thicker than the regimes presented
here; as much ten times thicker than longer. This may be sufficiently thick to utilise a boundary-layer
approach to model the effect of the rolls and using a matched asymptotic expansion find a sufficiently
broad technique to cover the entire operating regime.

Using an alternative approximate, empirical or even numerical solution to the inner problem may
also lead to some useful results such as stability conditions when matched to the outer problem.

6.1.2 English Wheel

Another exciting modelling application is the English wheel. It is an application that exists closer to
the small aspect ratio regime but requires the extension to three dimensions. Ensuring compatibility
span-wise will require some consideration of elastic effects but similar to the ring rolling model, other
solution methods could to match to an outer solution.

The outer solution would be a shell model to calculate compatibility through an out of plane defor-
mation of the plate. This may be sufficient to generate a work path for process automation. No solution
currently exists in literature for this.
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